L ecture 6:
Introduction to ML
INn Practice

CMSC 25910
Winter 2026
:?;%E"e THE UNIV

The University of Chicago CHICAGO

Goals and
Intuition

Relationship Between Task & Methods

» Task: explain/describe data

» Descriptive statistics (e.g., what percentage of students in the class are
late based on today’s attendance form?)

 Task: use observed data to infer information about a population

* Inferential statistics (e.g., what fraction of the vote will this candidate
receive based on this poll?)

 Task: draw a causal connection
« Experiments (including on human subjects)

» Task: predict characteristics of out-of-sample data
« Machine learning (prediction, forecasting, classification, etc.)

High-Level Intuition

High-Level Intuition

Training

ML Model

High-Level Intuition

Training

ML Model

a Inference

Fox :77%
Wolf: 23%

Why We Build Models

* To understand data
* To make predictions about out-of-sample data

« We will focus on supervised learning, which is when the
model is trained with a labeled dataset (e.g., "fox” and “wolf” in
the previous slide are the labels, which you can informally think
of as the “answers”)

* We will consider both classification (when the label is a
category) and regression (when the label is a number)

Regression
Example

Let’'s Build a Model To Understand Data

* Running example: a regression problem

« Example:
Jack Professor
Jane 27 Stats F Assistant ??
Professor

Given these input vectors... ...predict this variable

Building Intuition: Fitting a Line

Given Input Vector x, Predict y

* \We need to choose a model to do that

y = 0.3x

Output value /
Explanatory

Parameters /
weights

\" = W/TX/

y
x € R"

y €ER
w e R"

Input vector /
predictor

Let’'s Build a Model To Understand Data

* Running example: a regression problem

« Example:
Jack Professor
Jane 27 Stats F Assistant ??
Professor
X1, X2, X3, X4, X5 5}

Variables/Attributes/Columns become ‘features’ of the input vector

Linear Regression Model

* ‘Linear’ because of the relationship between x and y

y=wlx+0b

Linear Regression Model

* ‘Linear’ because of the relationship between x and y

A model is an assumption...
« ...of what function represents data well

y=wlx+0b

* Once we've fixed a model...
« ...we find the parameters/weights w that make the model perform well

Linear Regression Model

* ‘Linear’ because of the relationship between x and y

A model is an assumption... A~ _ T
« ...of what function represents data well y=Ww=x +b
* Once we've fixed a model...

« ...we find the parameters/weights w that make the model perform well

\ We need a This suggests /

method to we need a
find those performance

parameters metric

Our Data

A dataset becomes a matrix
« Each row is an input vector

Name Department Gender Title Student
Rating

Jack Professor
Jill 23 Econ F Professor 10.0
Josh 32 Bio M Staff 4.3
Jenn 44 Bio F Associate 7.6
Professor
Jane 27 Stats F Assistant 8.2

Professor

Our Data: Preparing It For ML

Probably drop this column (or perhaps calculate
/ some other inferred numerical feature from it)

NETlE

Jack

Jill

Josh

Jenn

Jane

Our Data: Preparing It For ML

Maybe keep as-is, but realize that the model may
“make” certain assumptions (e.g., think of a linear

model) f

Age

95

23

32

44

27

Our Data: Preparing It For ML

Probably dummy code by turning N categories
into N-1 binary columns (e.g., is_CS, is_Econ)

Department

CS

Econ

Bio

Bio

Stats

Our Data: Preparing It For ML

(Why N-1 rather than N? Otherwise, you have
multicollinearity, which can cause problems in
some cases) f

Department

CS

Econ

Bio

Bio

Stats

Our Data: Preparing It For ML

Probably dummy code, but what is your baseline
category? How do you handle small groups?

M

F

M

Our Data: Preparing It For ML

(Wait a second! We need to think carefully about
age and gender... are we using them to measure
the current world or make future predictions?)

95 M
23 F
32 M
44 F

27 F

Our Data: Preparing It For ML

(But even if we drop those columns, are their
effects captured by other columns, which are
often termed proxy variables)

Age
55 M
23 F
32 M
44 F

27 F

Train-Test Split Dataset

contains the
target
variable /

A dataset becomes a matrix label

« Each row is an input vector

Name Department Gender Title Student
Rating

Jack Professor
Training Jill 23 Econ F Professor 10.0
dataset

Josh 32 Bio M Staff 4.3

Test Jenn 44 Bio F NESIOEIE 7.6
Professor

dataset _

Jane 27 Stats F REEISE 8.2

Professor

Performance Metric

* Mean Squared Error (MSE)

» Error decreases to 0 when predicted y = ground-truth y

1
MSE et = — ~ (test) __ . (test) 2
Fiest - Z:(’y Yy o)

m test examples

» Goal: We want the model to perform well on the test data, which
has “never been seen before” (out-of-sample data)

Building Intuition...

1
—— A

Higher Capacity Models

* We can increase the capacity of the model by adding more
parameters; this will help with obtaining a “better” fit to the

training data, but that is not always what we want -
X

y=w
x € R"
y € R

w € R"

Optimization
* We want to find parameters w using the training dataset
vaSEtrain =0

 This is an optimization problem; we can find the minimum MSE

« Consider that we run this optimization with the training data.
What will happen when we run it on the test data?

Some Key
Challenges

Challenges For Machine Learning

« Learn parameters so the model performs well on unseen data
 Hope: Generalize to unseen data
« Optimization process: Do well on the training data

« Remember why we build models:
» To understand the process that generated the data (e.g., modeling)
« To make predictions about out-of-sample data (e.g., automated decisions)

Underfitting, Overfitting

 Underfitting

« Higher training error than necessary or desired

* Overfitting

A model achieves low training error, but high test error

* |deally, we want low training error and small gap between
training error and test error
* That's a model that explains the data generation process
» That's a model that helps us predict out-of-sample data

Underfitting, Overfitting...

Underfit

/ Possibly
/ Appropriate

Overfit

So What |Is Machine Learning?

A model
 Linear regression, logistic regression, random forest, neural network,...

« Parameters

* A performance metric
* For instance, MSE

A training objective
* Loss function
* A strategy to learn/fit the model parameters

One Common Task
Formulation:
Classification

[Some of the slides in this section were cannibalized from Elena Zheleva at UIC, and by the transitive property from the Berkeley DS 100 team,
Marine Carpuat, Lise Getoor, Brian Ziebart. Please do not further distribute. Mistakes are my own.]

Classification Problem

« Given an input vector x, predict a class ¢

 Binary classification problems
¢ Spam vs. not spam
* Give loan vs. don'’t o
« Admit student vs. don’t
« Will reoffend vs. won’t

Find a
hyperplane
that separates
the space of
positive and
negative
samples

* How do you evaluate this?
« Accuracy, false positives/negatives, ...

Classification Problem

 Build a model that can predict the
categorical value of an unseen object

* Problem setting

X — set of possible instances with features x;
Y — target class

Unknown target function f: X -»Y

Set of function hypotheses H={h|h: X —>Y}

* Input

* Training examples {(x,yW) . (x(¥), ("))} of unknown
distribution

 Output

» Hypothesis h € H that best approximates target function f

fluffiness

Logistic Regression

« Widely used models for binary classification:

I = “Get a FREE sample ...” m y— 1

o(x) = [2.0,0.0,...,1.0,0.5]

* Models P(y=1|x), the probability of y=71 given x
1

P@ (y=1|z) = U(¢($)T‘9) — 1 + exp (-¢($)Tt9)

Model Architectures

[Some of the slides in this section were cannibalized from Elena Zheleva at UIC, and by the transitive property from the Berkeley DS 100 team,
Marine Carpuat, Lise Getoor, Brian Ziebart. Please do not further distribute. Mistakes are my own.]

Some ML Model Architectures

* Regression models

* Decision trees

« Support Vector Machines (SVMs)
* Deep neural networks

* Many, many others

Example Decision Tree

* absent # present

start »= 8.57

~start >= 147 1

age < 4.67

age >=9.2?

@.

36% 15% 17% 9% 23%

Example Model Architectures

* Support vector machine (SVM)
« Learning is convex (globally optimal weights)

« SVMs are good for medium-large data

Ensemble Methods

[Some of the slides in this section were cannibalized from Elena Zheleva at UIC, and by the transitive property from the Berkeley DS 100 team,
Marine Carpuat, Lise Getoor, Brian Ziebart. Please do not further distribute. Mistakes are my own.]

Ensemble Methods

« Simplest approach:
1. Generate multiple classifiers
2. Each votes on test instance
3. Take majority as classification

e (Classifiers can be different due to
« different sampling of training data

* randomized parameters within the
classification algorithm

* inductive bias (e.g, decision tree +
perceptron + KNN)

Random Forests

* Definition: Ensemble of decision trees

 Algorithm:
« Divide training examples into multiple training sets (bagging)
 Train a decision tree on each set
« randomly select subset of variables to consider
» Aggregate the predictions of each tree to make classification decision
* €.g., can choose mode (most often) vote

XGBoost

* Developed by Chen and Guestrin (2016)
* Relies on gradient boosting

Adaptive boosting

Bias related errors . .
Gradient boosting

“ulz ::: XGBoost

Bagging
4 Random forest

Variance related errors

Figure: https://www.slideshare.net/JaroslawSzymczak1/xgboost-the-algorithm-that-wins-every-competition

Neural Networks

[Some of the slides in this section were cannibalized from Elena Zheleva at UIC, and by the transitive property from the Berkeley DS 100 team,
Marine Carpuat, Lise Getoor, Brian Ziebart. Please do not further distribute. Mistakes are my own.]

Predecessor: Perceptron (1958)

>

* Assume decision boundary isa «x,
hyperplane height
* Training = find a hyperplane w
that separates positive from
negative examples

¢ See:
https://en.wikipedia.org/wiki/Perceptron

X1
fluffiness

https://en.wikipedia.org/wiki/Perceptron

Neural Networks

 We can think of neural networks as combination
of multiple linear models (perceptrons)

« Multilayer perceptron

* Why would we want to do that? X2
* Discover more complex decision boundaries
« Learn combinations of features

Mathematical Model of a Neuron

 We can think of neural networks as L0 }zo
. . . b synapse
combination of multiple perceptrons axon from a neuron .’ ,Z)Oxo

 Hidden features define functions
of the inputs, computed by - @ f(Zw;a:;+b)
neurons M S wizi +b |f : B

. Artificial neurons are called units f S

activation

function

 Vanilla perceptron: activation
function is sign(z)

Neural Network Architecture

* Neural network with one layer of four hidden units:
output units
input layer

Q)
O O O inpUt UnitS hidden layer

» Figure: Two different visualizations of a 2-layer neural network. In this
example: 3 input units, 4 hidden units (layer 1) and 2 output units (layer 2)

« Each unit computes its value based on linear combination of values of units
that point into it, and an activation function

output layer

Neural Network Architecture

« Going deeper: a 3-layer
neural network with two
layers of hidden units

* N-layer neural network:

* N-1 layers of hidden units

* One output layer

put layer

input layer
hidden layer 1 hidden layer 2

Figure : A 3-layer neural net with 3 input units,
4 hidden units in the first and second hidden
layer and 1 output unit

Neural Networks at 10,000 Feet

. Y = f(X)

* F may be constructed by combining different functions

. h'=g" (W' x +b")

. h2=g2 (W2 h' + b?)

* Activation functions
« Softmax
* Relu

 And many many more...

* Optimizers

!
Vs
Y,
/f
o
b | o

(

Softmax

I:-:-:R]I higdeen hidden

)
O

Relu

Neural Networks: Backpropagation

« Goal: learn the weights of each layer

» Using backpropagation algorithm
« Forward pass = prediction/inference

« Backward pass = learning

« Convert discrepancy between each output and its target value into an error
derivative

« Compute error derivatives in each hidden layer from error derivatives in layer above

* The optimization function is non-convex

A mostly complete chart of

0w NeUral Networks ...

- Input Cell 20 Findor wan Ween - aslimovinstitute.org '
" STAYA)
&4 Moisy Input Cell)) W I
= Perceptron (P} Feed Forward (FF) Radial Basis Network [REF) = ‘_'-¢ “5’3“'.‘:'
— . pr B LxT At
@) Hidden cell _ _ :) ’Q? }%" (A
© Probablistic Hidden Cell -~ - -~
. Spiking Hidden Cell Recurrent Newral Network (RNN) Long / Short Term Memary (LSTM) Gated Recurrent Unit (GRU)
o e O - — - -
. Output Cell :
R, A R
@ votenn AR b
put Qutput Cell A rN N)
SRR . e Gt
\n'.\n'.\ _ \n'.\n'.\

. Recurrant Cell ’ :

I
. lemary Cell Auto Encoder (AE) Variational AE (VAE) Dencising AE (DAE) Sparse AE [SAE)

. Diffarent Memory Cell

) Kernel

Q Canvolution ar Pool

Markow Chain (MC) Hapfield Metwark (HM) Boltzmann Machine (BM) Restricted BM {REM) Deep Gelief Metwark (DBN)

FI

Deconvolutional Metwork (DM} Deep Convelutional Inverse Graphics Network (DCIGHN)

i

I I X
\WAVAVAW;

|
L

Censrative Adversarial Netwark (GAN} Liquid State Machine (L5M) Fxtreme Learning Machine (FLM) Echa State Metwork (FSM)

5

Neep Residual Metwork (DRM) Kohaonen Metwork (KM} Suppart Vector Machine (SYR) Neural Turing Machine (MTM)
- N -~ % &

Taken from http://www.asimovinstitute.org/neural-network-zoo/

‘Y 9.9 9 9
LRI XTI RN

r .’
AAWAWAW AW,

A More Detailed Discussion
of Feature Engineering

Feature Representation

 Transform categorical variables into a numerical representation
 Dummy coding

 Normalization

» Standardization
 Binning

» Other transformations

 All of these can have implications for ethics!

Feature Engineering

* Preprocessing data

* What aspects of data matter?
* What aspects should matter?

Pitfalls of Feature Engineering

* ML model performance depends on the input data
* |s the training data representative of the population?
 Are the transformations applied to the data correct?

* |s there enough training data to learn a good model?

« Many potential pitfalls throughout the process
 Even careful humans will make mistakes!

* AutoML and automatic augmentation techniques
* Opportunity or threat?

	Slide 1: Lecture 6: Introduction to ML in Practice
	Slide 2: Goals and Intuition
	Slide 3: Relationship Between Task & Methods
	Slide 4: High-Level Intuition
	Slide 5: High-Level Intuition
	Slide 6: High-Level Intuition
	Slide 7: Why We Build Models
	Slide 8: Regression Example
	Slide 9: Let’s Build a Model To Understand Data
	Slide 10: Building Intuition: Fitting a Line
	Slide 11: Given Input Vector x, Predict y
	Slide 12: Let’s Build a Model To Understand Data
	Slide 13: Linear Regression Model
	Slide 14: Linear Regression Model
	Slide 15: Linear Regression Model
	Slide 16: Our Data
	Slide 17: Our Data: Preparing It For ML
	Slide 18: Our Data: Preparing It For ML
	Slide 19: Our Data: Preparing It For ML
	Slide 20: Our Data: Preparing It For ML
	Slide 21: Our Data: Preparing It For ML
	Slide 22: Our Data: Preparing It For ML
	Slide 23: Our Data: Preparing It For ML
	Slide 24: Train-Test Split
	Slide 25: Performance Metric
	Slide 26: Building Intuition…
	Slide 27: Higher Capacity Models
	Slide 28: Optimization
	Slide 29: Some Key Challenges
	Slide 30: Challenges For Machine Learning
	Slide 31: Underfitting, Overfitting
	Slide 32: Underfitting, Overfitting…
	Slide 33: So What Is Machine Learning?
	Slide 34: One Common Task Formulation: Classification
	Slide 35: Classification Problem
	Slide 36: Classification Problem
	Slide 37: Logistic Regression
	Slide 38: Model Architectures
	Slide 39: Some ML Model Architectures
	Slide 40: Example Decision Tree
	Slide 41: Example Model Architectures
	Slide 42: Ensemble Methods
	Slide 43: Ensemble Methods
	Slide 44: Random Forests
	Slide 45: XGBoost
	Slide 46: Neural Networks
	Slide 47: Predecessor: Perceptron (1958)
	Slide 48: Neural Networks
	Slide 49: Mathematical Model of a Neuron
	Slide 50: Neural Network Architecture
	Slide 51: Neural Network Architecture
	Slide 52: Neural Networks at 10,000 Feet
	Slide 53: Neural Networks: Backpropagation
	Slide 54
	Slide 55: A More Detailed Discussion of Feature Engineering
	Slide 56: Feature Representation
	Slide 57: Feature Engineering
	Slide 58: Pitfalls of Feature Engineering

