15. Hardware Security
(Spectre and Meltdown Attacks)

Blase Ur and Grant Ho
February 26, 2024
CMSC 23200

f.d THE UNIVERSITY OF

5 CHICAGO

2

MELTDOWN

Attacks that exploit processor vulnerabllities
Can leak sensitive data
Relatively hard to mitigate
Lots of media attention

Relevant Ideas in CPUs
 Memory isolation: Processes should only be able to read
their own memory
 Virtual (paged) memory
* Protected memory / Protection domains
 CPUs have a relatively small, very fast cache
* Loading uncached data can take >100 CPU cycles

Relevant Ideas in CPUs
« Out-of-order execution: Order of processing in CPU can
differ from the order in code

* |nstructions are much faster than memory access; you
might be waiting for operands to be read from memory

* |nstructions retire (return to the system) in order even If
they executed out of order

Relevant Ideas in CPUs

* There might be a conditional branch in the instructions

« Speculative execution: Rather than waiting to determine
which branch of a conditional to take, go ahead anyway

 Predictive execution: Guess which branch to take
« Eager execution: Take both branches

Relevant Ideas in CPUs

 When the CPU realizes that the branch was mis-
speculatively executed, It tries to eliminate the effects

» A core idea underlying Spectre/Meltdown: The results of the
Instruction(s) that were mistakenly speculatively executed
will be cached in the CPU [yikes!]

Example (not problematic as written)

Consider the code sample below. If _ is uncached, the processor can speculatively load data
arrl->data[untrusted of ler]. This is an out-of-bounds read. That should not

matter because the processor WI|| effectlvely roII back the execution state when the branch has executed;
none of the speculatively executed instructions will retire (e.g. cause registers etc. to be affected).

struct array {
unsigned long length;
unsigned char datal];

}i
struckt array *arrl = cews
ugsigned . long: antrusted offset. from caller = ...7

if (untrusted offset from caller < _)

unsigned char value = ai

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

Example (really bad!!!)

However, in the following code sample, there's an issue. If SEEI=STEngth, FEE2=Sdataf0x200] and

aEr2=Sdataf0®800] are not cached, but all other accessed data is, and the branch conditions are
predicted as true, the processor can do the following speculatively before @EE1=STEnRGER has been loaded
and the execution is re-steered:

e load value = arrl->data[untrusted offset from caller]

» start a load from a data-dependent offset in BEE2=S@&Ea, loading the corresponding cache line
into the L1 cache

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

Example (really bad!!!)

struct array {

unsigned long length;

unsigned char datal];

i

struct array *arrl = ...; /* small array */

struct array *arr2 = ...; /* array of size 0x400 */

unsigned char value f
unsigned long index2 = ((valueé&l)*0x100)+0x200;
if (index2 < arr2->length) {

unsigned char value2 = GEigrodatainaexal ;

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

Example (really bad!!!)

After the execution has been returned to the non-speculative path because the processor has noticed that
untrusted offset from caller is bigger than GEEISSTERGEH, the cache line containing

arr2=Saatainae®ay stays in the L1 cache. By measuring the time required to load

SEE2=Saata0x200] and EEE2=S At 0X3007, an attacker can then determine whether the value of

index2 during speculative execution was 0x200 or 0x300 - which discloses whether
arrl->data[untrusted offset from caller]s&lisOor1.

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

Spectre: Key ldea

» Use branch prediction as on the previous slide
« Conducting a timing side-channel attack on the cache

* Determine the value of interest based on the speed with
which it returns

» Spectre allows you to read any memory from your
process for nearly every CPU

Spectre: Exploitation Scenarios

* Leaking browser memory
« JavaScript (e.d., In an ad) can run Spectre
« Can leak browser cache, session key, other site data

Spectre: Exploitation Scenarios

The Record - Leadership Cybercrime Nation-state Government People Technology About Contact Subscribe®
BY RECORDED FUTURE e

o X W 3 . < s R e o
First Fully Weaponized Spectre Exploit Discovered Online

N>

By Catalin Cimpanu .- March', 2021

“But today, Voisin said he discovered new Spectre exploits—one
for Windows and one for Linux—different from the ones before. In
particular, Voisin said he found a Linux Spectre exploit capable of
dumping the contents of /etc/shadow, a Linux file that stores
details on OS user accounts”

https://therecord.media/first-fully-weaponized-spectre-exploit-discovered-online/

Meltdown: Key Ideas
1. Attempt instruction with memory operand (Base+A), where
A Is a value forbidden to the process
2. The CPU schedules a privilege check and the actual access

3. The privilege check fails, but due to speculative execution,
the access has already run and the result has been cached

4. Conduct a timing attack reading memory at the address

(Base+A) for all possible values of A. The one that ran will
return faster

Meltdown: Impact

Meltdown allows you to read any memory in the address
space (even from other processes) but only on some
(unpatched) Intel/ARM CPUs

Meltdown: Timing Side Channel

* Now the attacker reads each page of probe array

« 255 of them will be slow

« The X page will be faster (it is cached!)

« We get the value of X using cache-timing side channel

= 500
; %ﬁ 200 X=284
§ 5 300
< 200
0 50 100 150 200 250
Page

Figure 4: Ewven if a memory location i1s only accessed
during out-of-order execution, it remains cached. Iterat-
ing over the 256 pages of probe_array shows one cache
hit, exactly on the page that was accessed during the out-
of-order execution.

Meltdown: Mitigation

« KAISER/KPTI (kernel page table isolation)

 Remove kernel memory mapping in user space
Drocesses

* Has non-negligible performance impact
« Some kernel memory still needs to be mapped

	Slide 1
	Slide 2
	Slide 3: Relevant Ideas in CPUs
	Slide 4: Relevant Ideas in CPUs
	Slide 5: Relevant Ideas in CPUs
	Slide 6: Relevant Ideas in CPUs
	Slide 7: Example (not problematic as written)
	Slide 8: Example (really bad!!!)
	Slide 9: Example (really bad!!!)
	Slide 10: Example (really bad!!!)
	Slide 11: Spectre: Key Idea
	Slide 12: Spectre: Exploitation Scenarios
	Slide 13: Spectre: Exploitation Scenarios
	Slide 14: Meltdown: Key Ideas
	Slide 15: Meltdown: Impact
	Slide 16: Meltdown: Timing Side Channel
	Slide 17: Meltdown: Mitigation

