
13. Authentication

Part 1

Blase Ur and Grant Ho

February 19th, 2024

CMSC 23200



Who Am I?

• Grant Ho

– Distinguished security researcher

– Recently moved here from California; hates the cold

– Fan of hot dogs

– Ed course forum expert



Or Am I?



How (and why) do we 

authenticate users?



Authentication in the Abstract

• Principal: legitimate owner of an identity

• Claimant: entity trying to be authenticated

• Verify that people or things (e.g., server) are who they 

claim, or maybe that the claimant has some attribute

• Authentication ≠ Authorization ≠ Access Control

– Authorization is deciding whether an entity should have access 

to a given resource

– Access control lists / policies



Authentication Use Cases

• Explicit authentication

– Single-factor authentication

– Multi-factor authentication (e.g., with Duo)

• Implicit authentication

– Continuous authentication (e.g., with behavioral biometrics)

• Risk-based authentication: vary auth requirements based 

on estimated risk



How We Authenticate (1/2)

• Something you know

– Password

– PIN (Personal Identification Number)

• Something you have

– Private key (of a public-private key pair)

– Hardware device (often with a key/seed)

– Phone (running particular software)

– Token (e.g., string stored in a cookie)



How We Authenticate (2/2)

• Something you are

– Biometrics (e.g., iris or fingerprint)

– Behavioral tendencies (behavioral biometrics)

• Somewhere you are

– Location-limited channels

– IP address

• Someone you know (social authentication)

• Some system vouches for you

– Single sign-on (e.g., UChicago shib/Okta)

– PKI Certificate Authorities



Passwords



Why Are Passwords So Prevalent?

• Easy to use

• Easy to deploy

• Nothing to carry

• No “silver-bullet” alternative



Why Are Passwords So Prevalent?

Bonneau et al. “The Quest to Replace Passwords: A Framework for Comparative 
Evaluation of Web Authentication Schemes,” In Proc. IEEE S&P, 2012



Why Are Passwords So Prevalent?

Bonneau et al. “The Quest to Replace Passwords: A Framework for Comparative 
Evaluation of Web Authentication Schemes,” In Proc. IEEE S&P, 2012



Attacks Against Passwords

• Phishing attack: try to trick the user into giving their 

credentials to you, believing you are the legitimate system

– Spear phishing: targeted to the recipient



Attacks Against Passwords

• Shoulder surfing: looking at someone else entering their 

credentials

Photo from https://www.researchgate.net/figure/A-shoulder-surfing-situation-in-a-cafe_fig1_312490451



Detour: Storing Passwords

• Goal: Prevent attacker from being able to use a stolen 

password database immediately (without more work)

• Hash function: one-way function

– Traditionally designed for efficiency (e.g., MD5, SHA-2), but 

don’t ever use those!

– Use password-specific hash functions (e.g., bcrypt, scrypt, 

Argon2)



Hashing on one NVIDIA RTX 4090

• Hashcat benchmarks

• MD5: ~ 150 billion / second

• SHA-1: ~ 50 billion / second

• UNIX md5crypt: ~ 60 million / second

• NTLM: ~ 250 billion / second

• SHA-2 (256): ~ 20 billion / second

• bcrypt (32 iterations): ~ 240,000 / second

• scrypt (16,384 iterations): ~ 7,000 / second

https://www.onlinehashcrack.com/tools-benchmark-hashcat-nvidia-rtx-4090.php



Storing Passwords

• Salt: random string assigned per-user

– Combine the password with the salt, then hash it

– Stored alongside the hashed password

– Prevents the use of rainbow tables (hash outputs are 

precomputed for many passwords, mapping sorted by output)

– Increases the attacker’s work proportional to the number of 

accounts

• Pepper: secret salt (very uncommon)

• Both salt and hash passwords



Typical (Web) Account Creation

• User sends username and desired password over an 

encrypted tunnel

• Server validates username (e.g., does it exist in the 

system?) and password (e.g., does it meet composition 

requirements?)

• Server generates a random salt

– Think about how long the salt should be!

• Server stores username, salt, and hash(password|salt) 

in database



Typical (Web) Authentication

• User sends username and password0 over an encrypted 

tunnel

• Server looks up the salt and hash output associated with 

that username

• Server computes hash(password0|salt)

• If it matches the hash output in the database, typically 

send back auth token (long string attacker can’t guess 

associated with that user’s session)



Guessing Attacks Against Passwords

• Online attack (web)

– Try passwords on a live system

– Usually rate-limited



Guessing Attacks Against Passwords

• Online attack (web)

– Try passwords on a live system

– Usually rate-limited

• Authenticating to a device is often similarly rate-limited 

(e.g., iPhone PIN) using secure hardware



Guessing Attacks Against Passwords

• Offline attack (web)

– Try to guess passwords from a stolen copy of the password 

store or password database



Guessing Attacks Against Passwords

• Offline attack (web)

– Try to guess passwords from a stolen copy of the password 

store or password database

• Attacking a file encrypted using a key derived from a 

password (e.g., with PBKDF2) is similar



• Attacker compromises database (e.g., via SQL injection)

– hash(“Blase”) = 
$2a$04$iHdEgkI681VdDMc3f7edau9phRwORvhYjqWAIb7hb4B5uFJO1g4zi

$ = delimiter

2a = bcrypt

04 = 24 iterations (cost)

iHdEgkI681VdDMc3f7edau = 16 bytes of salt (radix-64 encoded)

9phRwORvhYjqWAIb7hb4B5uFJO1g4zi = 24 bytes of hash output (radix-64 encoded)

• Attacker makes guesses (from most likely/probable to the 

least) and hashes those guesses

• Finds match → try on other sites

– Password reuse is a core problem

Offline Attack (In Practice)



80d561388725fa74f2d03cd16e1d687c

Attack Model



80d561388725fa74f2d03cd16e1d687c

1. h(“123456”) = e10adc3949ba59abbe56e057f20f883e

Attack Model



80d561388725fa74f2d03cd16e1d687c

1. h(“123456”) = e10adc3949ba59abbe56e057f20f883e
2. h(“password”) = 5f4dcc3b5aa765d61d8327deb882cf99

Attack Model



80d561388725fa74f2d03cd16e1d687c

1. h(“123456”) = e10adc3949ba59abbe56e057f20f883e
2. h(“password”) = 5f4dcc3b5aa765d61d8327deb882cf99
3. h(“monkey”) = d0763edaa9d9bd2a9516280e9044d885

Attack Model



80d561388725fa74f2d03cd16e1d687c

1. h(“123456”) = e10adc3949ba59abbe56e057f20f883e
2. h(“password”) = 5f4dcc3b5aa765d61d8327deb882cf99
3. h(“monkey”) = d0763edaa9d9bd2a9516280e9044d885
4. h(“letmein”) = 0d107d09f5bbe40cade3de5c71e9e9b7

Attack Model



80d561388725fa74f2d03cd16e1d687c

1. h(“123456”) = e10adc3949ba59abbe56e057f20f883e
2. h(“password”) = 5f4dcc3b5aa765d61d8327deb882cf99
3. h(“monkey”) = d0763edaa9d9bd2a9516280e9044d885
4. h(“letmein”) = 0d107d09f5bbe40cade3de5c71e9e9b7
5. h(“p@ssw0rd”) = 0f359740bd1cda994f8b55330c86d845

Attack Model



80d561388725fa74f2d03cd16e1d687c

1. h(“123456”) = e10adc3949ba59abbe56e057f20f883e
2. h(“password”) = 5f4dcc3b5aa765d61d8327deb882cf99
3. h(“monkey”) = d0763edaa9d9bd2a9516280e9044d885
4. h(“letmein”) = 0d107d09f5bbe40cade3de5c71e9e9b7
5. h(“p@ssw0rd”) = 0f359740bd1cda994f8b55330c86d845
6. h(“Chic4go”) = 80d561388725fa74f2d03cd16e1d687c

Attack Model



Credential Breaches



Some Breached Companies



• (2009) 32 million passwords: 

• (2016) 117 million passwords: 

• (2017) 3 billion passwords:

– Still not released publicly as of 2024

Data-Driven Statistical Attacks



Have I Been Pwned (as of 2/19/24)



Password Policies

(Partial Attempt to 

Combat Attacks)



What Do Human-Chosen 

Passwords Look Like? 

(Live Demo)



Blase Ur, Sean M. Segreti, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, Saranga Komanduri, Darya Kurilova, 
Michelle L. Mazurek, William Melicher, Richard Shay. Measuring Real-World Accuracies and Biases in Modeling 
Password Guessability. In Proc. USENIX Security Symposium, 2015.

Password Cracking



Statistical Metrics For Passwords

• Traditionally: Shannon entropy

• Recently: α-guesswork

• Disadvantages of statistical approaches

– Entropy does not consider human tendencies

– Usually no per-password estimates

– Huge sample required for accuracy (since many passwords are 

related to each other)

– Does not model real-world attacks



Parameterized Guessability

• How many guesses a particular cracking algorithm with 

particular training data would take to guess a password



Parameterized Guessability

Chic4go

Guess # 6



j@mesb0nd007!

Guess # 366,163,847,194

Parameterized Guessability



Guess # past cutoff

n(c$JZX!zKc^bIAX^N

Parameterized Guessability



Some Key Password-Cracking Approaches

• Brute force (or selective brute force)

• Wordlist

• Mangled wordlist

– Hashcat and John the Ripper

• Markov models

• Probabilistic Context-Free Grammar

• Deep learning

• In practice: manual, iterative updates



Wordlist

Super
Password
Chicago

Mangled Wordlist Attack



Wordlist

Super
Password
Chicago

1. Append “1”
2. Replace “a” → “4”
3. Lowercase all

Rulelist

Mangled Wordlist Attack



Wordlist

Super
Password
Chicago

1. Append “1”
2. Replace “a” → “4”
3. Lowercase all

Super1

Rulelist Guesses

Mangled Wordlist Attack



Wordlist Rulelist

Super
Password
Chicago

1. Append “1”
2. Replace “a” → “4”
3. Lowercase all

Guesses

Super1
Password1

Mangled Wordlist Attack



Wordlist

Super
Password
Chicago

1. Append “1”
2. Replace “a” → “4”
3. Lowercase all

Super1
Password1
Chicago1

Rulelist Guesses

Mangled Wordlist Attack



Wordlist

Super
Password
Chicago

1. Append “1”
2. Replace “a” → “4”
3. Lowercase all

Super1
Password1
Chicago1
Super
P4ssword
Chic4go

Rulelist Guesses

Mangled Wordlist Attack



Wordlist

Super
Password
Chicago

1. Append “1”
2. Replace “a” → “4”
3. Lowercase all

Super1
Password1
Chicago1
Super
P4ssword
Chic4go
super
password
chicago

Rulelist Guesses

Mangled Wordlist Attack



Wordlist

PGS (≈ 20,000,000)

Linkedin (≈ 60,000,000)

HIBP (≈ 500,000,000)

Example Wordlists and Rulelists



Wordlist Rulelist

PGS (≈ 20,000,000)

Linkedin (≈ 60,000,000)

HIBP (≈ 500,000,000)

Korelogic (≈ 5,000)

Megatron (≈ 15,000)

Generated2 (≈ 65,000)

Example Wordlists and Rulelists



Wordlist Rulelist

PGS (≈ 20,000,000)

Linkedin (≈ 60,000,000)

HIBP (≈ 500,000,000)

Korelogic (≈ 5,000)

Megatron (≈ 15,000)

Generated2 (≈ 65,000)

109 - 1015 
guesses

Example Wordlists and Rulelists



Wordlist Rulelist

PGS (≈ 20,000,000)

Linkedin (≈ 60,000,000)

HIBP (≈ 500,000,000)

Korelogic (≈ 5,000)

Megatron (≈ 15,000)

Generated2 (≈ 65,000)

109 - 1015 
guesses

+ Hackers’ private word/rule lists

Example Wordlists and Rulelists



• Wordlist mode requires:

– Wordlist (passwords and dictionary entries)

– Mangling rules

• Guesses variants of input wordlist

• Speed: Fast

• “JTR”

John the Ripper



John the Ripper

w
o

rd
list g

u
e

sse
s

ru
le

s



John the Ripper

uchicago

fun-dies

w
o

rd
list g

u
e

sse
s

ru
le

s



John the Ripper

uchicago

fun-dies

[ ]

[add 1 at end]

[change e to 3]

w
o

rd
list g

u
e

sse
s

ru
le

s



uchicago

fun-dies

uchicago

fun-dies

[ ]

[add 1 at end]

[change e to 3]

John the Ripper

w
o

rd
list g

u
e

sse
s

ru
le

s



uchicago

fun-dies

uchicago1

fun-dies1

g
u

e
sse

s

uchicago

fun-dies

[ ]

[add 1 at end]

[change e to 3]

John the Ripper

w
o

rd
list

ru
le

s



uchicago

fun-dies

[ ]

[add 1 at end]

[change e to 3]

uchicago

fun-dies

uchicago1

fun-dies1

uchicago

fun-di3s

John the Ripper

w
o

rd
list g

u
e

sse
s

ru
le

s



Hashcat

• Wordlist mode requires:

– Wordlist (passwords and dictionary entries)

– Mangling rules

• Guesses variants of input wordlist

• (Many other modes)

• Speed: Fast



Hashcat

w
o

rd
list g

u
e

sse
s
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le

s



Hashcat

uchicago

fun-dies

[ ]

[add 1 at end]

[change e to 3]

w
o

rd
list g

u
e

sse
s

ru
le

s



w
o

rd
list

uchicago

fun-dies

[ ]

[add 1 at end]

[change e to 3]

uchicago

uchicago1

uchicago

Hashcat

g
u

e
sse

s

ru
le

s



uchicago

fun-dies

[ ]

[add 1 at end]

[change e to 3]

uchicago

uchicago1

uchicago

fun-dies

fun-dies1

fun-di3s

Hashcat

w
o

rd
list g

u
e

sse
s

ru
le

s



Hashcat Mangling-Rule Language



*05 O03 d '7

Switch the first and the sixth char;

Delete the first three chars;

Duplicate the whole word;

Truncate the word to length 7;

Hashcat Mangling-Rule Language



Hashcat (Other Modes)

• Mask attack (brute force within a specified character-class 

structure)

• Combinator attacks

• Hybrid attacks

• Many more!



Markov Models

• Predicts future characters from previous

• Approach requires weighted data:

– Passwords

– Dictionaries

• Speed: Slow

• Smoothing is critical



Markov Models

chic4gooo

2-gram model (1 character of context):
[start] ➔ c (1.0) 
4 ➔ g (1.0)
c ➔ h (0.5), 4 (0.5) 
g ➔ o (1.0)
h ➔ i (1.0)
i ➔ c (1.0)
o ➔ o (0.67) [end] (0.33)



Probabilistic Context-Free Grammar

• Generate password grammar

– Structures

– Terminals

• OG: Weir et al. IEEE S&P 2009

• Speed: Slow

• “PCFG”



PCFG

passwordpassword

password123

usenix3

5ecurity

iloveyou

nirvanaa123



PCFG

passwordpassword

password123

usenix3

5ecurity

iloveyou

nirvanaa123

Structure Model:
L16  (1/6)
L8D3 (2/6)
L6D1 (1/6)
D1L7 (1/6)
L8  (1/6)



PCFG

passwordpassword

password123

usenix3

5ecurity

iloveyou

nirvanaa123

Digit Model:
D1 ➔ 3 (0.5) 5 (0.5)
D3 ➔ 123 (1.0)

Repeat for letters, etc.



Professionals (“Pros”)

• Proprietary wordlists and configurations

– 1014 guesses

– Manually tuned, updated

• For example: KoreLogic

– Password audits for Fortune 500 companies

– Run DEF CON “Crack Me If You Can”



4 password sets 5 approaches

Research Approach (2015)

password

iloveyou

teamo123

…

passwordpassword

1234567812345678

!1@2#3$4%5^6&7*8

…

Pa$$w0rd

iLov3you!

1QaZ2W@x

…

pa$$word1234

12345678asDF

!q1q!q1q!q1q

…



Configuration Is Crucial

LongComplex



Comparison for Complex Passwords



Per-Password Highly Impacted

P@ssw0rd!



Per-Password Highly Impacted

• JTR guess # 801

P@ssw0rd!



Per-Password Highly Impacted

• JTR guess # 801

• Not guessed in 1014 PCFG guesses

P@ssw0rd!



Per-Password Highly Impacted

• JTR guess # 801

• Not guessed in 1014 PCFG guesses

P@ssw0rd!



Neural Networks For Passwords

William Melicher, Blase Ur, Sean M. Segreti, Saranga Komanduri, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor. 
Fast, Lean, and Accurate: Modeling Password Guessability Using Neural Networks. In Proc. USENIX Security 
Symposium, 2016. 



Better Password Scoring

• Real-time feedback

• Runs entirely client-side

• Accurately models password guessability

Image CC by Wes Breazell on the Noun Project

Recurrent Neural 

Networks (RNNs)

LSTM Architecture



Generating Passwords



Generating Passwords

passw o or maybe 0 or O or ...



Generating Passwords

Next char is:
A: 3%
B: 1%
C: 0.6%
…
O: 55%
…
Z: 0.01%
0: 20%
1: ...

passw



“”
Prob: 100%

Next char is:
A:  3%
B:  2%
C:  5%
…
O:  2%
…
Z:  0.2%
0:  1%
1:  …
END: 2%

Generating Passwords



“”
Prob: 100%

Next char is:
A:  3%
B:  2%
C:  5%
…
O:  2%
…
Z:  0.2%
0:  1%
1:  …
END: 2%

Generating Passwords



“C”
Prob: 5%

Generating Passwords



Next char is:
A:  10%
B:  1%
C:  4%
…
O:  8%
…
Z:  0.02%
0:  3%
1:  …
END: 6%

“C”
Prob: 5%

Generating Passwords



Next char is:
A:  10%
B:  1%
C:  4%
…
O:  8%
…
Z:  0.02%
0:  3%
1:  …
END: 6%

“C”
Prob: 5%

Generating Passwords



“CA”
Prob: 0.5%

Next char is:
A:  3%
B:  10%
C:  7%
…
O:  1%
…
Z:  0.03%
0:  2%
1:  …
END: 12%

Generating Passwords



“CAB”
Prob: 0.05%

Next char is:
A:  3%
B:  10%
C:  7%
…
O:  1%
…
Z:  0.03%
0:  2%
1:  …
END: 3%

Generating Passwords



“CAB”
Prob: 0.05%

Next char is:
A:  4%
B:  3%
C:  1%
…
O:  2%
…
Z:  0.01%
0:  4%
1:  …
END: 12%

Generating Passwords



“CAB”
Prob: 0.05%

Next char is:
A:  4%
B:  3%
C:  1%
…
O:  2%
…
Z:  0.01%
0:  4%
1:  …
END: 12%

Generating Passwords



“CAB”
Prob: 0.006%

Generating Passwords



CAB - 0.006%
CAC - 0.0042%
ADD1 - 0.002%
CODE - 0.0013%
...

Generate in Descending Probability Order



Design Space

• Model size: 3mb (browser) vs. 60mb (GPU)

• Transference learning

– Novel password-composition policies

• Training data

– Natural language

• (Many others)
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