
13. Authentication

Part 1

Blase Ur and Grant Ho

February 19th, 2024

CMSC 23200

Who Am I?

• Grant Ho

– Distinguished security researcher

– Recently moved here from California; hates the cold

– Fan of hot dogs

– Ed course forum expert

Or Am I?

How (and why) do we

authenticate users?

Authentication in the Abstract

• Principal: legitimate owner of an identity

• Claimant: entity trying to be authenticated

• Verify that people or things (e.g., server) are who they

claim, or maybe that the claimant has some attribute

• Authentication ≠ Authorization ≠ Access Control

– Authorization is deciding whether an entity should have access

to a given resource

– Access control lists / policies

Authentication Use Cases

• Explicit authentication

– Single-factor authentication

– Multi-factor authentication (e.g., with Duo)

• Implicit authentication

– Continuous authentication (e.g., with behavioral biometrics)

• Risk-based authentication: vary auth requirements based

on estimated risk

How We Authenticate (1/2)

• Something you know

– Password

– PIN (Personal Identification Number)

• Something you have

– Private key (of a public-private key pair)

– Hardware device (often with a key/seed)

– Phone (running particular software)

– Token (e.g., string stored in a cookie)

How We Authenticate (2/2)

• Something you are

– Biometrics (e.g., iris or fingerprint)

– Behavioral tendencies (behavioral biometrics)

• Somewhere you are

– Location-limited channels

– IP address

• Someone you know (social authentication)

• Some system vouches for you

– Single sign-on (e.g., UChicago shib/Okta)

– PKI Certificate Authorities

Passwords

Why Are Passwords So Prevalent?

• Easy to use

• Easy to deploy

• Nothing to carry

• No “silver-bullet” alternative

Why Are Passwords So Prevalent?

Bonneau et al. “The Quest to Replace Passwords: A Framework for Comparative
Evaluation of Web Authentication Schemes,” In Proc. IEEE S&P, 2012

Why Are Passwords So Prevalent?

Bonneau et al. “The Quest to Replace Passwords: A Framework for Comparative
Evaluation of Web Authentication Schemes,” In Proc. IEEE S&P, 2012

Attacks Against Passwords

• Phishing attack: try to trick the user into giving their

credentials to you, believing you are the legitimate system

– Spear phishing: targeted to the recipient

Attacks Against Passwords

• Shoulder surfing: looking at someone else entering their

credentials

Photo from https://www.researchgate.net/figure/A-shoulder-surfing-situation-in-a-cafe_fig1_312490451

Detour: Storing Passwords

• Goal: Prevent attacker from being able to use a stolen

password database immediately (without more work)

• Hash function: one-way function

– Traditionally designed for efficiency (e.g., MD5, SHA-2), but

don’t ever use those!

– Use password-specific hash functions (e.g., bcrypt, scrypt,

Argon2)

Hashing on one NVIDIA RTX 4090

• Hashcat benchmarks

• MD5: ~ 150 billion / second

• SHA-1: ~ 50 billion / second

• UNIX md5crypt: ~ 60 million / second

• NTLM: ~ 250 billion / second

• SHA-2 (256): ~ 20 billion / second

• bcrypt (32 iterations): ~ 240,000 / second

• scrypt (16,384 iterations): ~ 7,000 / second

https://www.onlinehashcrack.com/tools-benchmark-hashcat-nvidia-rtx-4090.php

Storing Passwords

• Salt: random string assigned per-user

– Combine the password with the salt, then hash it

– Stored alongside the hashed password

– Prevents the use of rainbow tables (hash outputs are

precomputed for many passwords, mapping sorted by output)

– Increases the attacker’s work proportional to the number of

accounts

• Pepper: secret salt (very uncommon)

• Both salt and hash passwords

Typical (Web) Account Creation

• User sends username and desired password over an

encrypted tunnel

• Server validates username (e.g., does it exist in the

system?) and password (e.g., does it meet composition

requirements?)

• Server generates a random salt

– Think about how long the salt should be!

• Server stores username, salt, and hash(password|salt)

in database

Typical (Web) Authentication

• User sends username and password0 over an encrypted

tunnel

• Server looks up the salt and hash output associated with

that username

• Server computes hash(password0|salt)

• If it matches the hash output in the database, typically

send back auth token (long string attacker can’t guess

associated with that user’s session)

Guessing Attacks Against Passwords

• Online attack (web)

– Try passwords on a live system

– Usually rate-limited

Guessing Attacks Against Passwords

• Online attack (web)

– Try passwords on a live system

– Usually rate-limited

• Authenticating to a device is often similarly rate-limited

(e.g., iPhone PIN) using secure hardware

Guessing Attacks Against Passwords

• Offline attack (web)

– Try to guess passwords from a stolen copy of the password

store or password database

Guessing Attacks Against Passwords

• Offline attack (web)

– Try to guess passwords from a stolen copy of the password

store or password database

• Attacking a file encrypted using a key derived from a

password (e.g., with PBKDF2) is similar

• Attacker compromises database (e.g., via SQL injection)

– hash(“Blase”) =
$2a$04$iHdEgkI681VdDMc3f7edau9phRwORvhYjqWAIb7hb4B5uFJO1g4zi

$ = delimiter

2a = bcrypt

04 = 24 iterations (cost)

iHdEgkI681VdDMc3f7edau = 16 bytes of salt (radix-64 encoded)

9phRwORvhYjqWAIb7hb4B5uFJO1g4zi = 24 bytes of hash output (radix-64 encoded)

• Attacker makes guesses (from most likely/probable to the

least) and hashes those guesses

• Finds match → try on other sites

– Password reuse is a core problem

Offline Attack (In Practice)

80d561388725fa74f2d03cd16e1d687c

Attack Model

80d561388725fa74f2d03cd16e1d687c

1. h(“123456”) = e10adc3949ba59abbe56e057f20f883e

Attack Model

80d561388725fa74f2d03cd16e1d687c

1. h(“123456”) = e10adc3949ba59abbe56e057f20f883e
2. h(“password”) = 5f4dcc3b5aa765d61d8327deb882cf99

Attack Model

80d561388725fa74f2d03cd16e1d687c

1. h(“123456”) = e10adc3949ba59abbe56e057f20f883e
2. h(“password”) = 5f4dcc3b5aa765d61d8327deb882cf99
3. h(“monkey”) = d0763edaa9d9bd2a9516280e9044d885

Attack Model

80d561388725fa74f2d03cd16e1d687c

1. h(“123456”) = e10adc3949ba59abbe56e057f20f883e
2. h(“password”) = 5f4dcc3b5aa765d61d8327deb882cf99
3. h(“monkey”) = d0763edaa9d9bd2a9516280e9044d885
4. h(“letmein”) = 0d107d09f5bbe40cade3de5c71e9e9b7

Attack Model

80d561388725fa74f2d03cd16e1d687c

1. h(“123456”) = e10adc3949ba59abbe56e057f20f883e
2. h(“password”) = 5f4dcc3b5aa765d61d8327deb882cf99
3. h(“monkey”) = d0763edaa9d9bd2a9516280e9044d885
4. h(“letmein”) = 0d107d09f5bbe40cade3de5c71e9e9b7
5. h(“p@ssw0rd”) = 0f359740bd1cda994f8b55330c86d845

Attack Model

80d561388725fa74f2d03cd16e1d687c

1. h(“123456”) = e10adc3949ba59abbe56e057f20f883e
2. h(“password”) = 5f4dcc3b5aa765d61d8327deb882cf99
3. h(“monkey”) = d0763edaa9d9bd2a9516280e9044d885
4. h(“letmein”) = 0d107d09f5bbe40cade3de5c71e9e9b7
5. h(“p@ssw0rd”) = 0f359740bd1cda994f8b55330c86d845
6. h(“Chic4go”) = 80d561388725fa74f2d03cd16e1d687c

Attack Model

Credential Breaches

Some Breached Companies

• (2009) 32 million passwords:

• (2016) 117 million passwords:

• (2017) 3 billion passwords:

– Still not released publicly as of 2024

Data-Driven Statistical Attacks

Have I Been Pwned (as of 2/19/24)

Password Policies

(Partial Attempt to

Combat Attacks)

What Do Human-Chosen

Passwords Look Like?

(Live Demo)

Blase Ur, Sean M. Segreti, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor, Saranga Komanduri, Darya Kurilova,
Michelle L. Mazurek, William Melicher, Richard Shay. Measuring Real-World Accuracies and Biases in Modeling
Password Guessability. In Proc. USENIX Security Symposium, 2015.

Password Cracking

Statistical Metrics For Passwords

• Traditionally: Shannon entropy

• Recently: α-guesswork

• Disadvantages of statistical approaches

– Entropy does not consider human tendencies

– Usually no per-password estimates

– Huge sample required for accuracy (since many passwords are

related to each other)

– Does not model real-world attacks

Parameterized Guessability

• How many guesses a particular cracking algorithm with

particular training data would take to guess a password

Parameterized Guessability

Chic4go

Guess # 6

j@mesb0nd007!

Guess # 366,163,847,194

Parameterized Guessability

Guess # past cutoff

n(c$JZX!zKc^bIAX^N

Parameterized Guessability

Some Key Password-Cracking Approaches

• Brute force (or selective brute force)

• Wordlist

• Mangled wordlist

– Hashcat and John the Ripper

• Markov models

• Probabilistic Context-Free Grammar

• Deep learning

• In practice: manual, iterative updates

Wordlist

Super
Password
Chicago

Mangled Wordlist Attack

Wordlist

Super
Password
Chicago

1. Append “1”
2. Replace “a” → “4”
3. Lowercase all

Rulelist

Mangled Wordlist Attack

Wordlist

Super
Password
Chicago

1. Append “1”
2. Replace “a” → “4”
3. Lowercase all

Super1

Rulelist Guesses

Mangled Wordlist Attack

Wordlist Rulelist

Super
Password
Chicago

1. Append “1”
2. Replace “a” → “4”
3. Lowercase all

Guesses

Super1
Password1

Mangled Wordlist Attack

Wordlist

Super
Password
Chicago

1. Append “1”
2. Replace “a” → “4”
3. Lowercase all

Super1
Password1
Chicago1

Rulelist Guesses

Mangled Wordlist Attack

Wordlist

Super
Password
Chicago

1. Append “1”
2. Replace “a” → “4”
3. Lowercase all

Super1
Password1
Chicago1
Super
P4ssword
Chic4go

Rulelist Guesses

Mangled Wordlist Attack

Wordlist

Super
Password
Chicago

1. Append “1”
2. Replace “a” → “4”
3. Lowercase all

Super1
Password1
Chicago1
Super
P4ssword
Chic4go
super
password
chicago

Rulelist Guesses

Mangled Wordlist Attack

Wordlist

PGS (≈ 20,000,000)

Linkedin (≈ 60,000,000)

HIBP (≈ 500,000,000)

Example Wordlists and Rulelists

Wordlist Rulelist

PGS (≈ 20,000,000)

Linkedin (≈ 60,000,000)

HIBP (≈ 500,000,000)

Korelogic (≈ 5,000)

Megatron (≈ 15,000)

Generated2 (≈ 65,000)

Example Wordlists and Rulelists

Wordlist Rulelist

PGS (≈ 20,000,000)

Linkedin (≈ 60,000,000)

HIBP (≈ 500,000,000)

Korelogic (≈ 5,000)

Megatron (≈ 15,000)

Generated2 (≈ 65,000)

109 - 1015
guesses

Example Wordlists and Rulelists

Wordlist Rulelist

PGS (≈ 20,000,000)

Linkedin (≈ 60,000,000)

HIBP (≈ 500,000,000)

Korelogic (≈ 5,000)

Megatron (≈ 15,000)

Generated2 (≈ 65,000)

109 - 1015
guesses

+ Hackers’ private word/rule lists

Example Wordlists and Rulelists

• Wordlist mode requires:

– Wordlist (passwords and dictionary entries)

– Mangling rules

• Guesses variants of input wordlist

• Speed: Fast

• “JTR”

John the Ripper

John the Ripper

w
o

rd
list g

u
e

sse
s

ru
le

s

John the Ripper

uchicago

fun-dies

w
o

rd
list g

u
e

sse
s

ru
le

s

John the Ripper

uchicago

fun-dies

[]

[add 1 at end]

[change e to 3]

w
o

rd
list g

u
e

sse
s

ru
le

s

uchicago

fun-dies

uchicago

fun-dies

[]

[add 1 at end]

[change e to 3]

John the Ripper

w
o

rd
list g

u
e

sse
s

ru
le

s

uchicago

fun-dies

uchicago1

fun-dies1

g
u

e
sse

s

uchicago

fun-dies

[]

[add 1 at end]

[change e to 3]

John the Ripper

w
o

rd
list

ru
le

s

uchicago

fun-dies

[]

[add 1 at end]

[change e to 3]

uchicago

fun-dies

uchicago1

fun-dies1

uchicago

fun-di3s

John the Ripper

w
o

rd
list g

u
e

sse
s

ru
le

s

Hashcat

• Wordlist mode requires:

– Wordlist (passwords and dictionary entries)

– Mangling rules

• Guesses variants of input wordlist

• (Many other modes)

• Speed: Fast

Hashcat

w
o

rd
list g

u
e

sse
s

ru
le

s

Hashcat

uchicago

fun-dies

[]

[add 1 at end]

[change e to 3]

w
o

rd
list g

u
e

sse
s

ru
le

s

w
o

rd
list

uchicago

fun-dies

[]

[add 1 at end]

[change e to 3]

uchicago

uchicago1

uchicago

Hashcat

g
u

e
sse

s

ru
le

s

uchicago

fun-dies

[]

[add 1 at end]

[change e to 3]

uchicago

uchicago1

uchicago

fun-dies

fun-dies1

fun-di3s

Hashcat

w
o

rd
list g

u
e

sse
s

ru
le

s

Hashcat Mangling-Rule Language

*05 O03 d '7

Switch the first and the sixth char;

Delete the first three chars;

Duplicate the whole word;

Truncate the word to length 7;

Hashcat Mangling-Rule Language

Hashcat (Other Modes)

• Mask attack (brute force within a specified character-class

structure)

• Combinator attacks

• Hybrid attacks

• Many more!

Markov Models

• Predicts future characters from previous

• Approach requires weighted data:

– Passwords

– Dictionaries

• Speed: Slow

• Smoothing is critical

Markov Models

chic4gooo

2-gram model (1 character of context):
[start] ➔ c (1.0)
4 ➔ g (1.0)
c ➔ h (0.5), 4 (0.5)
g ➔ o (1.0)
h ➔ i (1.0)
i ➔ c (1.0)
o ➔ o (0.67) [end] (0.33)

Probabilistic Context-Free Grammar

• Generate password grammar

– Structures

– Terminals

• OG: Weir et al. IEEE S&P 2009

• Speed: Slow

• “PCFG”

PCFG

passwordpassword

password123

usenix3

5ecurity

iloveyou

nirvanaa123

PCFG

passwordpassword

password123

usenix3

5ecurity

iloveyou

nirvanaa123

Structure Model:
L16 (1/6)
L8D3 (2/6)
L6D1 (1/6)
D1L7 (1/6)
L8 (1/6)

PCFG

passwordpassword

password123

usenix3

5ecurity

iloveyou

nirvanaa123

Digit Model:
D1 ➔ 3 (0.5) 5 (0.5)
D3 ➔ 123 (1.0)

Repeat for letters, etc.

Professionals (“Pros”)

• Proprietary wordlists and configurations

– 1014 guesses

– Manually tuned, updated

• For example: KoreLogic

– Password audits for Fortune 500 companies

– Run DEF CON “Crack Me If You Can”

4 password sets 5 approaches

Research Approach (2015)

password

iloveyou

teamo123

…

passwordpassword

1234567812345678

!1@2#3$4%5^6&7*8

…

Pa$$w0rd

iLov3you!

1QaZ2W@x

…

pa$$word1234

12345678asDF

!q1q!q1q!q1q

…

Configuration Is Crucial

LongComplex

Comparison for Complex Passwords

Per-Password Highly Impacted

P@ssw0rd!

Per-Password Highly Impacted

• JTR guess # 801

P@ssw0rd!

Per-Password Highly Impacted

• JTR guess # 801

• Not guessed in 1014 PCFG guesses

P@ssw0rd!

Per-Password Highly Impacted

• JTR guess # 801

• Not guessed in 1014 PCFG guesses

P@ssw0rd!

Neural Networks For Passwords

William Melicher, Blase Ur, Sean M. Segreti, Saranga Komanduri, Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor.
Fast, Lean, and Accurate: Modeling Password Guessability Using Neural Networks. In Proc. USENIX Security
Symposium, 2016.

Better Password Scoring

• Real-time feedback

• Runs entirely client-side

• Accurately models password guessability

Image CC by Wes Breazell on the Noun Project

Recurrent Neural

Networks (RNNs)

LSTM Architecture

Generating Passwords

Generating Passwords

passw o or maybe 0 or O or ...

Generating Passwords

Next char is:
A: 3%
B: 1%
C: 0.6%
…
O: 55%
…
Z: 0.01%
0: 20%
1: ...

passw

“”
Prob: 100%

Next char is:
A: 3%
B: 2%
C: 5%
…
O: 2%
…
Z: 0.2%
0: 1%
1: …
END: 2%

Generating Passwords

“”
Prob: 100%

Next char is:
A: 3%
B: 2%
C: 5%
…
O: 2%
…
Z: 0.2%
0: 1%
1: …
END: 2%

Generating Passwords

“C”
Prob: 5%

Generating Passwords

Next char is:
A: 10%
B: 1%
C: 4%
…
O: 8%
…
Z: 0.02%
0: 3%
1: …
END: 6%

“C”
Prob: 5%

Generating Passwords

Next char is:
A: 10%
B: 1%
C: 4%
…
O: 8%
…
Z: 0.02%
0: 3%
1: …
END: 6%

“C”
Prob: 5%

Generating Passwords

“CA”
Prob: 0.5%

Next char is:
A: 3%
B: 10%
C: 7%
…
O: 1%
…
Z: 0.03%
0: 2%
1: …
END: 12%

Generating Passwords

“CAB”
Prob: 0.05%

Next char is:
A: 3%
B: 10%
C: 7%
…
O: 1%
…
Z: 0.03%
0: 2%
1: …
END: 3%

Generating Passwords

“CAB”
Prob: 0.05%

Next char is:
A: 4%
B: 3%
C: 1%
…
O: 2%
…
Z: 0.01%
0: 4%
1: …
END: 12%

Generating Passwords

“CAB”
Prob: 0.05%

Next char is:
A: 4%
B: 3%
C: 1%
…
O: 2%
…
Z: 0.01%
0: 4%
1: …
END: 12%

Generating Passwords

“CAB”
Prob: 0.006%

Generating Passwords

CAB - 0.006%
CAC - 0.0042%
ADD1 - 0.002%
CODE - 0.0013%
...

Generate in Descending Probability Order

Design Space

• Model size: 3mb (browser) vs. 60mb (GPU)

• Transference learning

– Novel password-composition policies

• Training data

– Natural language

• (Many others)

	Slide 1
	Slide 2: Who Am I?
	Slide 3: Or Am I?
	Slide 4: How (and why) do we authenticate users?
	Slide 5: Authentication in the Abstract
	Slide 6: Authentication Use Cases
	Slide 7: How We Authenticate (1/2)
	Slide 8: How We Authenticate (2/2)
	Slide 9: Passwords
	Slide 10: Why Are Passwords So Prevalent?
	Slide 11: Why Are Passwords So Prevalent?
	Slide 12: Why Are Passwords So Prevalent?
	Slide 13: Attacks Against Passwords
	Slide 14: Attacks Against Passwords
	Slide 15: Detour: Storing Passwords
	Slide 16: Hashing on one NVIDIA RTX 4090
	Slide 17: Storing Passwords
	Slide 18: Typical (Web) Account Creation
	Slide 19: Typical (Web) Authentication
	Slide 20: Guessing Attacks Against Passwords
	Slide 21: Guessing Attacks Against Passwords
	Slide 22: Guessing Attacks Against Passwords
	Slide 23: Guessing Attacks Against Passwords
	Slide 24: Offline Attack (In Practice)
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Credential Breaches
	Slide 33: Some Breached Companies
	Slide 34: Data-Driven Statistical Attacks
	Slide 35: Have I Been Pwned (as of 2/19/24)
	Slide 36: Password Policies (Partial Attempt to Combat Attacks)
	Slide 37: What Do Human-Chosen Passwords Look Like? (Live Demo)
	Slide 38: Password Cracking
	Slide 39: Statistical Metrics For Passwords
	Slide 40: Parameterized Guessability
	Slide 41
	Slide 42
	Slide 43
	Slide 44: Some Key Password-Cracking Approaches
	Slide 45: Mangled Wordlist Attack
	Slide 46: Mangled Wordlist Attack
	Slide 47: Mangled Wordlist Attack
	Slide 48: Mangled Wordlist Attack
	Slide 49: Mangled Wordlist Attack
	Slide 50: Mangled Wordlist Attack
	Slide 51: Mangled Wordlist Attack
	Slide 52: Example Wordlists and Rulelists
	Slide 53: Example Wordlists and Rulelists
	Slide 54: Example Wordlists and Rulelists
	Slide 55: Example Wordlists and Rulelists
	Slide 56: John the Ripper
	Slide 57: John the Ripper
	Slide 58: John the Ripper
	Slide 59: John the Ripper
	Slide 60: John the Ripper
	Slide 61: John the Ripper
	Slide 62: John the Ripper
	Slide 63: Hashcat
	Slide 64: Hashcat
	Slide 65: Hashcat
	Slide 66: Hashcat
	Slide 67: Hashcat
	Slide 68: Hashcat Mangling-Rule Language
	Slide 69: Hashcat Mangling-Rule Language
	Slide 70: Hashcat (Other Modes)
	Slide 71: Markov Models
	Slide 72: Markov Models
	Slide 73: Probabilistic Context-Free Grammar
	Slide 74: PCFG
	Slide 75: PCFG
	Slide 76: PCFG
	Slide 77: Professionals (“Pros”)
	Slide 78: Research Approach (2015)
	Slide 79: Configuration Is Crucial
	Slide 80: Comparison for Complex Passwords
	Slide 81: Per-Password Highly Impacted
	Slide 82: Per-Password Highly Impacted
	Slide 83: Per-Password Highly Impacted
	Slide 84: Per-Password Highly Impacted
	Slide 85: Neural Networks For Passwords
	Slide 86: Better Password Scoring
	Slide 87: Generating Passwords
	Slide 88: Generating Passwords
	Slide 89: Generating Passwords
	Slide 90: Generating Passwords
	Slide 91: Generating Passwords
	Slide 92: Generating Passwords
	Slide 93: Generating Passwords
	Slide 94: Generating Passwords
	Slide 95: Generating Passwords
	Slide 96: Generating Passwords
	Slide 97: Generating Passwords
	Slide 98: Generating Passwords
	Slide 99: Generating Passwords
	Slide 100: Generate in Descending Probability Order
	Slide 101: Design Space

