
09. How the Web Works

Blase Ur and Grant Ho

February 5th, 2024

CMSC 23200

Your interface to the web

• Your web browser contacts a web server

A 10,000 Foot View of Technologies

• Where things run:

HTML / CSS

JavaScript
(Angular/React)

Browser Extensions

Django (Python) / CGI (Perl) /
PHP / Node.js / Ruby on Rails

Databases (MySQL)

HTTP(S)

The Anatomy of a URL

• https://www.uchicago.edu/fun/funthings.htm?query=music

&year=2024#topsection

The Anatomy of a URL

• https://www.uchicago.edu/fun/funthings.htm?query=music

&year=2024#topsection

– Protocol: https

– Hostname: www.uchicago.edu

• .edu is the top level domain (TLD)

– Path: /fun/funthings.html

– Parameters: (key=value pairs, & delimited)

– Named anchor: #topsection

• Some technologies (e.g., Django) parse the path differently

(e.g., parameters in path)

The Anatomy of a Webpage

• view-source:https://www.cs.uchicago.edu/

• HTML (hypertext markup language)

– Formatting of a page

– All sorts of formatting: <div><p>Hi</p></div>

– Links: Click here

– Pictures:

– Forms

– Audio/video

The Anatomy of a Webpage

The Anatomy of a Webpage

• CSS (cascading style sheets)

<link href="/css/main.css?updated=20181020002547" rel="stylesheet" media="all">

view-source:https://www.cs.uchicago.edu/css/main.css?updated=20181020002547

• #id (intended to be unique)

• .class (not intended to be unique)

The Anatomy of a Webpage

• DOM (document object model)

Typing Something into a Browser:

• DNS (domain name service)

– www.cs.uchicago.edu resolves to IP address 128.135.164.125

• https://www.cs.uchicago.edu/

– Protocol: https

– Hostname: www.cs.uchicago.edu

– Default file name (since none is listed): index.html (and similar)

http://www.cs.uchicago.edu/

HTTP Request

• HTTP = Hypertext Transfer Protocol

• Start line: method, target, protocol version

– GET /index.html HTTP/1.1

– Method: GET, PUT, POST, HEAD, OPTIONS

• HTTP Headers

– Host, User-agent, Referer, many others
– https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

• Body (not needed for GET, etc.)

• In Firefox: F12, “Network” to see HTTP requests

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

HTTP Request

From https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages

• GET /index.html HTTP/1.1

Sending Data to a Server

• GET request

– Data at end of URL (following “?”)

• POST request

– Typically used with forms

– Data not in URL, but rather (in slightly encoded form) in the HTTP
request body

• PUT request

– Store an entity at a location

URL Parameters / Query String

• End of URL (GET request)

– https://www.cs.uchicago.edu/?test=foo&test2=bar

HTTP Response

• Status: https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

– 200 (OK)

– 404 (not found)

– 301 (moved permanently)

– 302 (moved temporarily)

• HTTP Headers

• Body

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

HTTP

From https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages

HTTPS

• Simply an HTTP request sent over TLS!

– That is, the request and response are encrypted

• An extension of HTTP over TLS (i.e., the request/response

itself is encrypted)

• Which CAs (certificate authorities) does your browser trust?

– Firefox: Options → Privacy & Security → (all the way at the

bottom) View Certificates

Keeping State Using Cookies

• Cookies enable persistent state

• Set-Cookie HTTP header

• Cookie HTTP header

– Cookie: name=value; name2=value2; name3=value3

• Cookies are automatically sent with all requests your

browser makes

• Cookies are bound to an origin (only sent to the origin that

set them)

Keeping State Using Cookies

• Session cookies (until you close your browser) vs.

persistent cookies (until the expiration date)

• Secure cookies = only sent over HTTPS, not HTTP

• HTTPonly cookies are not accessible to JavaScript, etc.

• View cookies: “Application” tab in Chrome developer tools,

“Storage” in Firefox

Authorization Tokens = Cookies

• You log into a website, and it presents you an authorization

token (typically a hash of some secret)

• Subsequent HTTP requests automatically embed this

authorization token

Other Ways to Keep State

• Local storage

• Flash cookies

• (Many more)

JavaScript

Interactive Pages?

• JavaScript!

– The core idea: Let’s run code on the client’s computer

• Math, variables, control structures

• Imperative, object-oriented, or functional

• Modify the DOM

• Request data (e.g., through AJAX)

• Can be multi-threaded (web workers)

Common Javascript Libraries

• JQuery (easier to specify access to DOM)

– $(".test").hide() hides all elements with class="test"

• JQueryUI

• Bootstrap

• Angular / React

• Google Analytics (sigh)

Importing Javascript Libraries

Do You Have the Right .js File?

• Subresource integrity (SRI): https://developer.mozilla.org/en-

US/docs/Web/Security/Subresource_Integrity

• <script src=“https://example.com/example-framework.js”

integrity="sha384-

oqVuAfXRKap7fdgcCY5uykM6+R9GqQ8K/uxy9rx7HNQlGYl1kP

zQho1wx4JwY8wC“></script>

• cat FILENAME.js | openssl dgst -sha384 -binary | openssl

base64 –A

https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://example.com/example-framework.js

Patching JavaScript Libraries

• Many outdated (and sometimes vulnerable) JavaScript

libraries continue to be used

• Very complex chain of dependencies!

– How do you determine if a given change is for good or evil?

Core Web Defense:

Same-Origin Policy

Same-Origin Policy

• Prevent malicious DOM access

• Origin = URI scheme, host name, port

• Only if origin that loaded script matches can a script access

the DOM

– Not where the script ultimately comes from, but what origin loads

the script

Same-Origin Policy (SOP)

Iframes (Inline Frames)

• Enable you to embed a webpage inside another webpage

Image from https://www.thoughtco.com/when-to-use-iframes-3468667

CORS (Relaxes SOP)

• Cross-Origin Resource Sharing

– Specifies when specific other origins can make a request for data

on a different origin

• https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

• Access-Control-Allow-Origin: https://foo.example

• Access-Control-Allow-Methods: POST, GET, OPTIONS

• Access-Control-Allow-Headers: X-PINGOTHER, Content-Type

• Access-Control-Max-Age: 86400

32

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

When CORS is Not Needed

33From https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

When CORS is Needed

34From https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Revisiting SRI Relative to Crossing Origins

• <script src=https://example.com/example-framework.js

integrity="sha384-

oqVuAfXRKap7fdgcCY5uykM6+R9GqQ8K/uxy9rx7HNQlGY

l1kPzQho1wx4JwY8wC“

crossorigin="anonymous"></script>

– anonymous = No credentials (e.g., cookies)

– use-credentials

35From https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/crossorigin

https://example.com/example-framework.js

	Slide 1
	Slide 2: Your interface to the web
	Slide 3: A 10,000 Foot View of Technologies
	Slide 4: The Anatomy of a URL
	Slide 5: The Anatomy of a URL
	Slide 6: The Anatomy of a Webpage
	Slide 7: The Anatomy of a Webpage
	Slide 8: The Anatomy of a Webpage
	Slide 9: The Anatomy of a Webpage
	Slide 10: Typing Something into a Browser:
	Slide 11: HTTP Request
	Slide 12: HTTP Request
	Slide 13: Sending Data to a Server
	Slide 14: URL Parameters / Query String
	Slide 15: HTTP Response
	Slide 16: HTTP
	Slide 17: HTTPS
	Slide 18: Keeping State Using Cookies
	Slide 19: Keeping State Using Cookies
	Slide 20: Authorization Tokens = Cookies
	Slide 21: Other Ways to Keep State
	Slide 22: JavaScript
	Slide 23: Interactive Pages?
	Slide 24: Common Javascript Libraries
	Slide 25: Importing Javascript Libraries
	Slide 26: Do You Have the Right .js File?
	Slide 27: Patching JavaScript Libraries
	Slide 28: Core Web Defense: Same-Origin Policy
	Slide 29: Same-Origin Policy
	Slide 30: Same-Origin Policy (SOP)
	Slide 31: Iframes (Inline Frames)
	Slide 32: CORS (Relaxes SOP)
	Slide 33: When CORS is Not Needed
	Slide 34: When CORS is Needed
	Slide 35: Revisiting SRI Relative to Crossing Origins

