09. How the Web Works

Blase Ur and Grant Ho
February 5th, 2024
CMSC 23200

g4 [HE UNIVERSITY OF

O CHICAGO

Your interface to the web

* Your web browser contacts a web server

A 10,000 Foot View of Technologies

* Where things run:

wp: HTTP(S) s

HTML / CSS Django (Python) / CGI (Perl) /

_ PHP / Node.js / Ruby on Rails
JavaScript

(Angular/React)
Databases (MySQL)

Browser Extensions

The Anatomy of a URL

* https://www.uchicago.edu/fun/funthings.ntm”?query=music
&year=2024#topsection

The Anatomy of a URL

* https://www.uchicago.edu/fun/funthings.ntm”?query=music
&year=2024

— Protocol: https
— Hostname: www.uchicago.edu

* .edu is the top level domain (TLD)
— Path: /fun/funthings.html

— Parameters: (key=value pairs, & delimited)
. #itopsection

« Some technologies (e.g., Django) parse the path differently
(e.g., parameters in path)

The Anatomy of a Webpage

* view-source:https://www.cs.uchicago.edu/

» HTML (hypertext markup language)

— Formatting of a page

— All sorts of formatting: <div><p>Hi</p></div>

— Links: Click here

— Pictures:

— Forms

— Audio/video

The Anatomy of a Webpage

C @ & view-source:https://www.cs.uchicago.edu/ 1m0% - & vy N @ ® & =

1"></a
-2021">UChicago Researchers Present Seven Papers at Major Quantum Theory Conference</h4>

igital-transformation-institute-announces-cfp-to-advance-ai-for-energy-and-climate-security"><img class="r1600-900" src="https://d3gilOgp55
ai-digital-transformation-institute-announces-cfp-to-advance-ai-for-energy-and-climate-security">C3.ai Digital Transformation Institute An

The Anatomy of a Webpage

« CSS (cascading style sheets)

<link href="/css/main.css?updated=2018102000254 7" rel="stylesheet" media="all">

view-source:https://www.cs.uchicago.edu/css/main.css?updated=20181020002547

* #id (intended to be unique)

» .class (not intended to be unique)

The Anatomy of a Webpage

 DOM (document object model)

DOM

document
Root element:
<html>
Element:
<head>

v
o
o
=
)
(9]
g
e
O
e
c
u
£
=
[9)
o
@]

Element:
<body>

Element:

<title>

Text:
"My title"

Element:

<hl>

Text:
"A heading"

Attribute:
href

<a>

Text:
"Link text"

Typing Something into a Browser:

* DNS (domain name service)

— WWW.CS.uchicago.edu resolves to IP address 128.135.164.125

* https://www.cs.uchicago.edu/

— Protocol: https
— Hostname: www.cs.uchicago.edu
— Detault file name (since none is listed): index.html (and similar)

http://www.cs.uchicago.edu/

HT TP Request

* HTTP = Hypertext Transfer Protocol

« Start line: method, target, protocol version

— GET /index.ntml HTTP/1.1
— Method: GET, PUT, POST, HEAD, OPTIONS

« HT TP Headers

— Host, User-agent, Referer, many others
— https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

* Body (not needed for GET, etc.)
* In Firefox: F12, "Network” to see HT TP requests

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

HT TP Request

* GET /index.ntml HTTP/1.1

ACUVWY initiation HTTP/2 stream
(composed of frames)

HTTP/1.x message

PUT /create page HTTP/1.1
Host: localhost:8000
Connection: keep-alive

Translation Upgrade-Insecure-Requests: 1 Binary -

- P Content-Type: text/html :
INtO HTTP content-Length: 345 framing

Body line 1
Body line 2

From https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages

Sending Data to a Server

 GET request
— Data at end of URL (following “?")

« POST request

— Typically used with forms

— Data not in URL, but rather (in slightly encoded form) in the HTTP
request body

 PUT request
— Store an entity at a location

URL Parameters / Query String

* End of URL (GET request)

— https://www.cs.uchicago.edu/?test=foo&test2=bar

<> C w ® @ https://www cs.uchicago.edu/?test=foo&test2=bar e @ v

§=5)
THE UNIVERSITY OF CHICAGO Industry / Diversity / Apply

Department of

Computer Science

ABOUT PEOPLE RESEARCH UNDERGRADUATE GRADUATE ADMISSION
W {3 Inspector [J Console (O Debugger {} StyleEditor (G Performance £k Memory = Network & Storage % Accessibility New
Tar Filter URLs I Al HTML CSS JS XHR Fonts Images Media WS Other []Persist Logs []Disable cache
Status Method E. Domain Cause Type Transferred Size 01~ [l Headers Cookies Params Response Timings Stack Trace
[?test=... www.cs.uchi... document 6.76 KB 23.87 KB Filter request parameters
302 GET fonts.css @ cloud.typogr... stylesheet css 154.58 KB 205.03 KB Query string
200 GET main.cs... @ www.cs.uchi... stylesheet css cached 189.57 KB test: foo
test2: bar
GET moder... @& www.cs.uchi... script js cached 5.65 KB
GET jquery... @ ajax.googlea... script js cached 0B

200 GET jquery-... @ ajax.googlea... script js cached 0B

HT TP Response

¢ StatUS: https://developer.mozilla.org/en-US/docs/Web/HT TP/Status

— 200 (OK)

— 404 (not found)

— 301 (moved permanently)
— 302 (moved temporarily)

« HT TP Headers
* Body

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status

HTTP

Requests Responses

start- .
POST / HTTER/1.1 ine — ™ [HITP/1.1 403 Forbidden
Host: localhost:8000 Server: Apache
User-Agent: Mcozilla/5.0 (Macintosh;..). Firefox/51.0) Content-Type: text/html; charset=is0-8855-1
Accept: text/html,applicaticn/xhtml+xml,., */*;g=0. & Date: Wed, 10 Aug 2016 09:23:25 cMT
Acceplb-Language: en-US,en;g=0.5 @ Keegp-Alive: timeout=3, max=1000
Accepb-Fneceding: gzip, deflate = Connection: Keep-Alive
Connection: keep-alive E Age: 3464
Upgrade-Insecure-Requests: 1 - Date: Wed, 10 Aug 2016 09:46:25 CGMT
Content-Type: multipart/form-data; boundary=-126569%74 ¥-Cache-Info: caching
Content-Length: 345 empty Content-Length: 220
I - line — ™.
P -12656974 | <TDOCTYPE HTML PUBLIC "-//IETF//DTD HTML |

(more data) -q— bgdy—lh- 2.0//EN">
i {more data,l

From https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages

HTTPS

o Simply an HT TP request sent over TLS!

— That Is, the request and response are encrypted

* An extension of HT TP over TLS (i.e., the request/response
itself is encrypted)

* Which CAs (certificate authorities) does your browser trust?

— Firefox: Options = Privacy & Security = (all the way at the
bottom) View Certificates

Keeping State Using Cookies

» Cookies enable persistent state
« Set-Cookie HT TP header

 Cookie HTTP header
— Cookie: name=value; name2Z=value?2; hame3=value3

» Cookies are automatically sent with all requests your
browser makes

» Cookies are bound to an origin (only sent to the origin that
set them)

Keeping State Using Cookies

» Session cookies (until you close your browser) vs.
persistent cookies (until the expiration date)

» Secure cookies = only sent over HTTPS, not HTTP
» HTTPonly cookies are not accessible to JavaScript, etc.

* View cookies: “Application™ tab in Chrome developer tools,
“Storage” in Firefox

Authorization Tokens = Cookies

* You log Into a website, and it presents you an authorization
token (typically a hash of some secret)

« Subsequent HT TP requests automatically embed this
authorization token

Other Ways to Keep State

* Local storage
* Flash cookies

* (Many more)

JavaScript

Interactive Pages?

» JavaScript!
— The core idea: Let’s run code on the client’s computer

 Math, variables, control structures

* Imperative, object-oriented, or functional
* Modify the DOM

* Request data (e.g., through AJAX)

» Can be multi-threaded (web workers)

Common Javascript Libraries

JQuery (easier to specify access to DOM)

— $(".test").hide() hides all elements with class="test"

JQueryUl
Bootstrap
Angular / React
Google Analytics

Importing Javascript Libraries

c @& view-source:https://www.cs.uchicago.edu/ 110% oee w N o

</div>
</div>
</div>

<div class="row">
<div class="footer copy">

<p>© 2021 The University of Chicago</p>
</div>
</div>
</div>

</footer>

<script defer src="/js/libs/modernizr.js?updated=20191205080224"></script>

<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.4/jquery.min.js"></script>
<script src="https://ajax.googleapis.com/ajax/libs/jqueryui/l.11.4/jquery-ui.min.js"></script>
<script>window.jQuery || document.write('<script src="/js/libs/jquery/2.1.4/jquery.min.js"><\/script><script src="/js/libs}
<script defer src="/js/core-min.js?updated=20191205080225"></script>

<!--[if 1lte IE 8]><script src="/js/libs/selectivizr.js"></script><![endif]-->
<!--[if lte IE 9]><script src="/js/ie fixes/symbolset.js"></script><![endif]-->
<!--<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery.lifestream/0.3.7/jquery.lifestream.min.js"></script> —->

<script async src="https://www.googletagmanager.com/gtag/js?id=UA-3572058-1"></script>
<script>window.datalayer = window.datalayer || [];function gtag() {datalayer.push (arguments);}gtag('js', new Date());
gtag('config', 'UA-3572058-1");gtag('config', 'UA-187440939-1"');</script>

</body>
</html>

Do You Have the Right .js File?

» Subresource integrity (SRI): https://developer.mozilla.org/en-
US/docs/Web/Security/Subresource_Inteqrity

» <script src="https.//example.com/example-framework.js”
Integrity="sha3384-
oqVUATXRKap7fdgcCY5uykM6+RIGoQEK/uxy9rx7THNQIGYI1kP
zQho1wx4JwY8wC“></script>

» cat FILENAME.|s | openss| dgst -sha384 -binary | openssl
basebd —A

https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://developer.mozilla.org/en-US/docs/Web/Security/Subresource_Integrity
https://example.com/example-framework.js

Patching JavaScript Libraries

* Many outdated (and sometimes vulnerable) JavaScript
ibraries continue to be used

* Very complex chain of dependencies!

— How do you determine if a given change is for good or evil?

Core Web Defense:
Same-O0rigin Policy

Same-Origin Policy

* Prevent malicious DOM access
* Origin = URI scheme, host name, port

* Only if origin that loaded script matches can a script access
the DOM

— Not where the script ultimately comes from, but what origin loads
the script

Same-0Origin Policy (SOP)

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy B e w I\

Definition of an origin

Two URLs have the same origin if the protocol, port (if specified), and host are the same for
both. You may see this referenced as the "scheme/host/port tuple”, or just "tuple”. (A "tuple" is a
set of items that together comprise a whole — a generic form for double/triple/quadruple
/quintuple/etc.)

The following table gives examples of origin comparisons with the URL
http://store.company.com/dir/page.html:

URL Outcome Reason

Same
http://store.company.com/dir2/other.html o Only the path differs

origin
http://store.company.com/dir/inner Same

- - g Only the path differs
/another.html origin
https://store.company.com/page.html Failure Different protocol
. . Different port (http:// is port 80 by

http://store.company.com:81/dir/page.html Failure

default)

http://news.company.com/dir/page.html Failure Different host

Iframes (Inline Frames)

* Enable you to embed a webpage inside another webpage

CORS (Relaxes SOP)

» Cross-Origin Resource Sharing

— Specifies when specific other origins can make a request for data
on a different origin

 https://developer.mozilla.org/en-US/docs/Web/HT TP/CORS

e Access-Control-Allow-Origin: https://foo.example

* Access-Control-Allow-Methods: POST, GET, OPTIONS
* Access-Control-Allow-Headers: X-PINGOTHER, Content-Type

* Access-Control-Max-Age: 86400

32

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

When CORS is Not Needed

Some requests don't trigger a CORS preflight. Those are called simple requests, though the Fetch & spec
(which defines CORS) doesn't use that term. A simple request is one that meets all the following
conditions:

* One of the allowed methods:
o GET

o HEAD
o POST
« Apart from the headers automatically set by the user agent (for example, Connection, User-Agent,
or the other headers defined in the Fetch spec as a forbidden header name @), the only headers

which are allowed to be manually set are
those which the Fetch spec defines as a CORS-safelisted request-header 2, which are:

o Accept

o Accept-Language

o Content-Language

o Content-Type (please note the additional requirements below)

* The only type/subtype combinations allowed for the media type specified in the Content-Type
header are:

o application/x-www-form-urlencoded
o multipart/form-data
o text/plain

e |f the request is made using an XMLHttpRequest object, no event listeners are registered on the
object returned by the XMLHttpRequest.upload property used in the request; that is, given an
XMLHttpRequest instance xhr, no code has called xhr.upload.addEventListener() to add an
event listener to monitor the upload.

¢ No ReadableStream object is used in the request.

From https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

33

When CORS is Needed

What requests use CORS?

This cross-origin sharing standard @ can enable cross-origin HTTP requests for:

¢ |Invocations of the XMLHttpRequest or Fetch APls, as discussed above.

* Web Fonts (for cross-domain font usage in @font-face within CSS),
so that servers can deploy TrueType fonts that can only be loaded cross-origin and used by web sites

that are permitted to do so. @

e WebGL textures.

¢ Images/video frames drawn to a canvas using drawImage() .

e CSS Shapes from images.

This is a general article about Cross-Origin Resource Sharing and includes a discussion of the necessary
HTTP headers.

From https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

34

Revisiting SRI Relative to Crossing Origins

» <script src=https://example.com/example-framework.|s
integrity="sha384-
0qVUATXRKap 7fdgcCY5uykM6+RIOGaQ8EK/uxy9rx7THNQIGY
1kPzQho1wx4JwY8wC*
crossorigin="anonymous"></script>

— anonymous = No credentials (e.g., cookies)
— use-credentials

From https://developer.mozilla.org/en-US/docs/Web/HTML/Attributes/crossorigin 35

https://example.com/example-framework.js

	Slide 1
	Slide 2: Your interface to the web
	Slide 3: A 10,000 Foot View of Technologies
	Slide 4: The Anatomy of a URL
	Slide 5: The Anatomy of a URL
	Slide 6: The Anatomy of a Webpage
	Slide 7: The Anatomy of a Webpage
	Slide 8: The Anatomy of a Webpage
	Slide 9: The Anatomy of a Webpage
	Slide 10: Typing Something into a Browser:
	Slide 11: HTTP Request
	Slide 12: HTTP Request
	Slide 13: Sending Data to a Server
	Slide 14: URL Parameters / Query String
	Slide 15: HTTP Response
	Slide 16: HTTP
	Slide 17: HTTPS
	Slide 18: Keeping State Using Cookies
	Slide 19: Keeping State Using Cookies
	Slide 20: Authorization Tokens = Cookies
	Slide 21: Other Ways to Keep State
	Slide 22: JavaScript
	Slide 23: Interactive Pages?
	Slide 24: Common Javascript Libraries
	Slide 25: Importing Javascript Libraries
	Slide 26: Do You Have the Right .js File?
	Slide 27: Patching JavaScript Libraries
	Slide 28: Core Web Defense: Same-Origin Policy
	Slide 29: Same-Origin Policy
	Slide 30: Same-Origin Policy (SOP)
	Slide 31: Iframes (Inline Frames)
	Slide 32: CORS (Relaxes SOP)
	Slide 33: When CORS is Not Needed
	Slide 34: When CORS is Needed
	Slide 35: Revisiting SRI Relative to Crossing Origins

