Crypto Part 3: Certificates & TLS
CMSC 23200, Winter 2024, Lecture 6

Grant Ho & Blase Ur

University of Chicago
(Slides adapted from David Cash)

Outline: Crypto Part 3

Recap: Secure communication channels
Authenticating endpoints: Certificates (Certs)
Issuing Certs and Certificate Infrastructure (PKI)
Attacks, Countermeasures

Real World Secure Channels: SSL/ TLS

Template For Secure Channels (TLS, SSH, IPSec, ...)

Key Exchange (“Handshake”)

uchicago.edu

Symmetric Encryption (“Record Protocol”)

<encrypted data>

<encrypted data>

<encrypted data>

- Last lecture: Naive strategy can be secure against passive adversaries.
- But the above template does not provide authentication & integrity.

Securing Key Exchange against Active Attackers

Key Challenge: Authenticity: How do we know that PK is really Bob’s?

\J

“ PK, SK «— Keygen
Pick random (Active Attacker)
AES key K

PK ... PK’
Alice Bob
C = Enc(PK',K) & 4 C = Enc(PK,K)
K K<Dec (SK, C)
AES-GCM (K, M;i) lK

Authentication with Certificates (“Certs”)

Suppose we had a globally trusted entity, BlaséInc.

BlaséInc couldissue certificates (“certs”) that
state what other organizations’ public keys are.

Cert = a document that says:
1. An Entity (e.g., Bob) has a public key that is:
2. pk=0x7b5532...,, where the document is
3. signed using the BlaséInc's private signing key

Trusted entity, BlaséInc, known as a Certificate Authority (CA)

Authentication with Certificates (“Certs”)

01=51ign (SK", "google.com]| | PK1"

(PK1, SK1) \

certi1=[PKi, "google.com", o1]

(VK*, SK*)

ID Proof, PK1

cert:

google.com

02=S1ign (SK”", "uchicago.edu] | PK2")

(PK2, SK2) ‘

certz=[PKz, "uchicago.edu", o2]

uchicago.edu

VK* pre-installed on every machine by manufacturer or built into OS code.

Securing Key Exchange against Active Attackers

\J

e |scert for Bob?

 Does the cert have correct “
signature (check w/ VK*)? (Active Attacker) PK, SK «— Keygen

cert=[PK, "Bob", o]

. C = Enc(PK, K) Bob
Alice
Verify Same Key
| < (MAC (K, Dialogue)) > K_Dec (SK, C)
Pick random l
AES key K K l

K
AES-GCM (K, M)

Outline: Crypto Part 3

Recap: Secure communication channels
Authenticating endpoints: Certificates (Certs)
Issuing Certs and Certificate Infrastructure (PKI)
Attacks, Countermeasures

Real World Secure Channels: SSL/ TLS

Issuing Certificates: Validation

(PK*, SK")
PK1

(PK1, SK1)
certs

certi1=[PKi, “uchicago.edu”, o1]

CA

uchicago.edu

« CA must check that key PK, really does belong to “uchicago.edu”

Domain Validation (DV): Check that party with that key can control domain.

Org. Validation (OV) and Extended Validation (EV): Also check company name,
location etc via public records.

ACME Protocol by Let's Encrypt

(PK*, SK")
PK1

(PK1, SK1)

certi
certi1=[PKi, "uchicago.edu”, o1]

CA

uchicago.edu

1. Requestor submits public key and request to CA

2. CA gives a challenge to requestor
3. Requestor places challenge on server or DNS records
4. CA checks challenge and then issues cert if challenge matches

K2 Let’s Encrypt M

Scaling Certificates to the Internet

(VK", SK") ID Proof, PKi

cert: (PK1, SK1)

google.com

Having one CA works fine if the Internet has just a few
entities and everyone agrees that the CA is trustworthy.

Scaling Certificates to the Internet

(VK", SK") ID Proof, PKi

Certificate cert: (PK1i, SK1)

Authority
(CA)

google.com

But the Internet has billions of

devices...
And not everyone agrees on a

trusted party (CA)...

Scaling: Intermediate CAs and Cert Chains

Root CA Intermediate CA

PK1

cert:

To handle scaling:

 Allow a trusted Root CA to delegate their trust to multiple intermediate CA’s

 Any of these intermediate CA’s can then create a certificate for someone
 100’s of intermediate CA’s on the Internet

To check PK,
recursive
validation:

1)

Check cert,
to make sure
PK, for
uchicago.edu
Get PK; and
cert, to check
sig of cert,

If cert, issued
by root CA,
use PK* to its
check sig.

Scaling: Intermediate CAs and Cert Chains

(PK1, SK1)

(PK*, SK")
: PK1
<
certs
Hello!
PKy ; certoe

certi1=[PKi, "Intermediate CA", o1]

(PK2, SK2)

cert2=[PKz, "uchicago.edu", oz]

uchicago.edu

PK" bound to Root = PK: bound to CA = PKz bound to uchicago.edu

X.509 Certificates

Cert Content Includes:

« Cert’s Serial number

- Cert’s Expiration date

« Common name of subject (e.g., Bob [google.com])
- Public key of subject

« Extensions (possibly many)

« CA info (name of CA that is issuing the cert, etc.)

« CA's Signature (on hash of cert)

Who are we
trusting?

Who's
signature?

B USERTrust RSA Certification Authority
L B InCommon RSA Server CA

L B *uchicago.edu

Public Key Info
Algorithm
Parameters

Exponent
Key Size
Key Us

Signature

RSA Encryption (1.2.840.113549.1.1.1)
None

256 bytes : CAE9 012577 E9 74 B8 CB F7 99 DA D6 87 79 35 D7 31 CA D7 8311 83 32 FA'™A43 CC
C8 857B 76 EF 79 BB 4B 8B EO 35 87 EE A4 34 17 DC 5A OD 5A 04 D3 F1 BAE7 98 9F 49 FC D5 BE
2CFBC8 DD 3647 4D 07 FE 411175 B0 42 F7 6D 40 4C BF F5 B6 C7 FE 05 OD DE 3B 7C E9 9F 6A
1TC1C 89 2EAAE8F5E35B04 5516 B04892 C7 F9 371189 F8 C5 85 C124 96 71 6F 78 B6 6B 35
3992 8C EF17 91D1 97 D7 EF 93 6E 95 F1 EE C6 OD 5AEA 39 C6 4E 33 E2 CAF29A 41F4 A2 41 9C
E8 EA 46 FB EF 71 CO A6 D3 C6 A5 94 81 4B 12 5E 80 63 87 7C 2F A6 8A A5 9A 31 9E 81 63 7F OF 26
25B66D62C2ADB4E768FDCOF8862C 3FF8E159 F3 3E73 08 DF 6C 92 98 21 D2 AD EF 23
E7 33 A2 D4 5E 67 74 E3 AB 08 DF 15 31 9A 9D 3B 36 7D 6B 77 48 60 17 A4 10 F3 17 77 53 EQ3#D°¢
12 OF 39 DA D1

65537
2,048 bits
crypt, Verify, Wrap, Derive

256 bytes : 11 F9 F9 6D C6 92 D1 B9 E7 13 E6 OD BA E6 19 65 BB 16 4B DE E1 C2 3A 62 55 D1 61 80
93 FO 2A B2 7D 9E 76 CE 10 4A D6 96 4E 5C 00 5D BD 8C 83 74 CF C114 91 2B 15 4B 2D 67 4A 84
A2 A4 54 7A B1 CO 8EF5 A7 93 8D 30 BF OC 9B EF 98 36 D6 4B BD B6 11 63 C2 5123 717B 8D 4C
9B B7 AD A9 FE A8 4E 48 B2 83 A1 36 75 97 2B 36 4A 72 C4 AA C6 B6 A8 4A CO F4 37 BD OE 85 B1
ABFBECB6 B5SBBA8C2C0OBBB747D7D4DB058072BACBC779 8163 CC 55D7 68 9C 412B
E7 D9 FOC2 8F 1115 7D C5 D5 34 27 5C 7C B5 D9 A8 3F 3C DF C51D AA 52 0319 AESB FC FF 42
6815 A3 01 CBF8 OEFE 9B A176 B8 43 1C 6B 9C 57 38 87 81 3B 4A 33 98 09 CF 25 F4 75 34 AEIE
7B CD OF EF A0 4C 5B 92 B7 F1 FD 66 1B 49 67 BO 65 5A 90 1D 1D 54 D2 CF FF FD 07 DC 7A 88
15516 7F 83 D4 FC 19 F4 28

o0 It @
LG T
&' login
& iCloud
@ System
[System Roots

Category
M All ltems
/ Passwords
. Secure Notes
B My Certificates
? Keys
B Certificates

Root CA's & Root Certificates

Name
|
=
=
=
|
|}
=
=
|
<
=
=
=
=
[
=
=
<
[
=
=
B
|
=
|}
=
|
=
=
=
=
-5

Apple Root CA

Root certificate authority

Expires: Friday, February 9, 2035 at 3:40:36 PM Central Standard Time

@ This certificate is valid

AAA Certificate Services

AC RAIZ FNMT-RCM

Actalis Authentication Root CA
Admin-Root-CA

AffirmTrust Commercial
AffirmTrust Networking
AffirmTrust Premium
AffirmTrust Premium ECC
Amazon Root CA 1

Amazon Root CA 2

Amazon Root CA 3

Amazon Root CA 4

ANF Global Root CA

Apple Root CA

Apple Root CA - G2

Apple Root CA - G3

Apple Root Certificate Authority
Atos TrustedRoot 2011
Autoridad de Certificacion Firmaprofesional CIF A62634068
Autoridad de Certificacion Raiz del Estado Venezolano
Baltimore CyberTrust Root
Belgium Root CA2

Buypass Class 2 Root CA
Buypass Class 3 Root CA

CA Disig Root R1

CA Disig Root R2

Certigna

Certinomis - Autorité Racine
Certinomis - Root CA

Certplus Root CA G1

Certplus Root CA G2

certSIGN ROOT CA

Kind

certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate

Expires

Dec 31, 2028 at 5:59:59...
Dec 31, 2029 at 6:00:00...
Sep 22, 2030 at 6:22:02...
Nov 10, 2021 at 1:51:07 AM
Dec 31, 2030 at 8:06:06...
Dec 31, 2030 at 8:08:24...
Dec 31, 2040 at 8:10:36...
Dec 31, 2040 at 8:20:24...
Jan 16, 2038 at 6:00:00...
May 25, 2040 at 7:00:00...
May 25, 2040 at 7:00:00...
May 25, 2040 at 7:00:00...
Jun 5, 2033 at 12:45:38...
Feb 9, 2035 at 3:40:36 PM
Apr 30, 2039 at 1:10:09 PM
Apr 30, 2039 at 1:19:06 P...
Feb 9, 2025 at 6:18:14 PM
Dec 31, 2030 at 5:59:59...
Dec 31, 2030 at 2:38:15...
Dec 17, 2030 at 5:59:59...
May 12, 2025 at 6:59:00...
Dec 15, 2021 at 2:00:00...
Oct 26, 2040 at 3:38:03...
Oct 26, 2040 at 3:28:58...
Jul 19, 2042 at 4:06:56 AM
Jul 19, 2042 at 4:15:30 AM
Jun 29, 2027 at 10:13:05...
Sep 17, 2028 at 3:28:59...
Oct 21, 2033 at 4:17:18 AM
Jan 14, 2038 at 6:00:00...
Jan 14, 2038 at 6:00:00...
Jul 4, 2031 at 12:20:04 PM

Keychain

System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots

Outline: Crypto Part 3

Recap: Secure communication channels
Authenticating endpoints: Certificates (Certs)
Issuing Certs and Certificate Infrastructure (PKI)
Attacks, Countermeasures

Real World Secure Channels: SSL/ TLS

What If attacker got a “valid” cert for uchicago.edu
that has their malicious key?

- . Hello!
5 PK’; Cert' ‘ J PK,; Cert
f —
urogue Certu U_ChiCagO.edu

(PK1, SK1)

- “Machine-in-the-middle” can read/change all traffic undetected

TECHNOLOGY | August 31, 2011

Google warns of man-in-the-
middle attacks on Iranian users

Intrusion into Dutch SSL provider led to cyber snooping

CA Security

Some common attacks to get rogue certificate:
* Fool or bypass a CA’s validation process

« Compromise a CA organization and generate malicious cert’s

Internet-Facing

Internal
ACME API
Customers Receive and validate all
customer requests
— CA Enclave
Register account; request, \
renew, and revoke i dati Registration

certificates; prove control | ————_| Valldﬂtl? n Authority

over identifiers Authority Certificate

i : Relying Parties
Verifies challenges for | | Handles account Authority | OCSP Updater OCSP Responder ying
client identifiers registration; manages 1

identifier validation, Signs certificates and i

! Replies to OCSP requests Replies to OCSP requests Ask for '::ﬁfﬁi::';:m‘”s of
certificate requests, SCTs OCSP responses H
for precertificates,
CT Logs Publisher / revoafion recuests
Maintain public, append- .
e N Uploads certificates and HSM
only log of certificates; " .
issue SCTs that promise pr?:s:'j::tseé}r: ;:’95.
that a certificate will be " e
included in the log submitted precertificates
Storage Authority

Manages database of certificates, logs, and other records
(All components connected; lines omitted)

Figure 3: Boulder architecture. Let’s Encrypt developed and operates a Go-based open-source CA software platform named Boulder, which is composed of
single-purpose components that communicate over gRPC, as illustrated here. The certificate lifecycle unfolds roughly from left to right in the diagram.

“Let’s Encrypt: An Automated Certificate Authority to Encrypt the Entire Web”,
CCS 2019

Sample of CA Security Incidents

- 2011, Root CA Comodo: Login credentials stolen. Hacker issues certs for
mail.google.com, login.live.com, www.google.com, login.yahoo.com...

« 2011, Root CA DigiNotar: Hacker issues rogue cert for *.google.com, others.
Used to MitM by lranian government.

- 2013, Root CA TurkTrust: Accidentally issues intermediate CA cert, used to
Issue gmail.com cert.

« 2019, Root CA Comodo: Pushes email login credentials to public GitHub
repo...

(Slide inspiration: Dan Boneh)

Countermeasure: Public-Key Pinning

Goal: Eliminate Root / Intermediate CA’'s with bad hygiene or who you don't trust

Server (e.g., website) can tell client (e.g., browser) to only accept certs signed by certain CA’s
» Code trusted CA keys into client app (e.g., Chrome only trusts certs signed by Google’s CA), or
« Send special application message telling client what to pin (More common)

Helped discover some rogue certs from previous slide

What are some problems with this defense?
* |f server hacked... attacker can pin a malicious key/cert: will only connect w/ attacker cert!

» Website error: pin wrong or broken key... website inaccessible!

Now deprecated because of these issues

Countermeasure: Revocation

Publicly list bad (revoked) certificates so they are no longer accepted

e CA or Server (that was issued cert) can revoke

Mass Revocation: Millions of certificates
revoked by Apple, Google & GoDaddy

The DarkMatter debate is already having industry-wide ramifications

Millions of SSL/TLS certificates — among other digital certificates — are being revoked right now as a
result of an operational error that caused the generation of non-compliant serial numbers.

00
Let's Encrypt to Revoke 3 Million SSL
Certificates on March 4
The world's leading free SSL provider announces that millions of

certificates are being revoked due to a bug they discovered days ago —
giving subscribers potentially only hours to respond

Cert Revocation Lists (CRLS)

« Each CA provides a list of revoked cert’s
(PK*, SK")
e Clients can download CRL and check cert’s
they receive against the list
* Problems:

« List will get too large

« Difficult to keep current

Revoked serial numbers:
09823342365
23423482349
98072344456

Revocation: Online Certificate Status Protocol (OCSP)

OCSP Server (CA)

Is Cert valid?
Yes or No

("OCSP response”)

— (PK2, SKZ)
B; Cert uchicago.edu
—

« Add another server to connect to, slowing connection
« What if OCSP server times out?

* Privacy problem?

Revocation: OCSP Stapling

OCSP Server (CA) Is Cert valid?

OCSP Response:
Signed(Yes / No,
Timestamp)

A

— (PKZI SKZ)

B; Cert; OCSP response
—

uchicago.edu

» TLS Extension that allows for OCSP response to be included with cert
 Client checks CA signature and time-stamp on response (~hours old).

» Certs can have “must staple” extension.

Revocation: OCSP Stapling

OCSP Server (CA) Is Cert valid?

OCSP Response:
Signed(Yes / No,
Timestamp)

A
—

B; Cert; OCSP response
—

(PK2, SK2)

uchicago.edu

Problems?

« OCSP server goes down => uchicago.edu goes down (no OCSP response to attach to cert)

Certificate Transparency (CT) :
How do we find rogue certs?

Certificate Transparency

How CT works

ctors v Our story GitHub

Working together to detect
maliciously or mistakenly issued

certificates.

.........

.........

.........

and

An ecosystem that makes the issuance of website
certificates

Scenario: Attackers compromise a CA and
create rogue certs for google.com that have
(1) attacker’s public keys and

(2) valid CA signature

How does Google or the CA discover these
rogue certs were issued or in use?

Cert Transparency:

* Require all cert’s added to public audit logs

 Domains & CA’s can check audit logs for
rogue certs & revoke them

Certificate Transparency (CT)

Simplified strategy to find certificates we should revoke:
* An auditor maintains a list (log) of every certificate ever issued
 Whenever a CA issues a cert, they submit (add) cert to this log
* Clients only accept a server’s cert if it appears on the log

e Each server (domain) can now monitor the logs to see if anyone
(and who) issued a rogue certificate for them
* |f so, add the rogue cert to revocation lists
* |f CA has pattern of issuing rogue cert’s, ban them

Certificate Transparency (CT)

(PK", SK") PK

CA Cert + SCT

\iert CT Log
server

SCT:
Signed
Proof that
cert was certl
1ogaed cert2
99 cert3

Hello

Cert + SCT

google.com
(PK, Cert, SCT)

CT Log server maintains a list of
all certs issued by CA(s).

“Monitors” check for improper certs;
help domains & CA(s) find bad cert’s

Clients only accept certs if server also
has valid SCT's for certs

In practice: multiple CT log servers

Challenges with CT

List is huuuuge (every issued cert... solution: temporal sharding)
Trust the CT Log?
(Monitors) Who checks the logs?

Privacy (e.g., enterprise has private servers)?

CT Log Server

Cert Transparency & OCSP

domain owner

WWW.
(1) requests certificate
COoOm < ol o T 2L
o Tl
1 \\

F——

AN
[} 1 N
1 1 N
I I %
1 I I
\
! ‘\ i %J
1 \ N
' AN : 7 NS
: \ ! /7 O
i . | ’ o \ o
(4) | serves sl (3) sends cert & st - ‘\?{é
| website (2, e =77 certificate v 9
i and = O ' ! authority s
= | |+
| certificate W, : : oy
1 =
: |]
— - . n | 1 8
@ | | ot
5| ! .
] o X
I:' [Ok p—
(2 H | @ R
[0) \
: oI 2 [N 4
=0 5 RN A
S s B A
I S/ ~M
|) oy 71
1 q v, [SURTERN S
(5) | via browser é\,‘\ e ~ ‘\ g
1 v
! through HTTPS &, \ P
I 5“/1/ £
> 7
_X @
H
& https://| user o ! \
AY
agents ! N
| § 5 | N \\
| \ | —~
1 | Vo
| ' kg
; ! (2b) add certificate to logs, Y %
i I powered by merkle trees N1 o
I i -
I \ o
v \]
\ 'g
\ I
N 1
) g @ |:| \‘L
\\~ D
visitors monitors

(https://certificate.transparency.dev/howctworks/)

How do CT and OCSP compare?

OCSP: Allows clients to
determine if a cert is valid

CT: Allows domains (cert owners)
and CA’s to find malicious cert’s

Outline: Crypto Part 3

- Recap: Secure communication channels

- Authenticating endpoints: Certificates (Certs)

- Issuing Certs and Certificate Infrastructure (PKI)
- Attacks, Countermeasures

- Real World Secure Channels: SSL/ TLS

TLS In the Protocol Stack

Application (HTTP)

e | TT,S

Transport (TCP)

Network (IP)

Data Link (Ethernet)

Physical (802.11)

- Goal: Allow any application using TCP to transmit data with E2E security

« TLS takes requests from applications (e.g. browser speaking HTTP) and transmits
them securely to another host on the Internet

History: SSL/TLS

« SSL = "Secure Sockets Layer”
- TLS = “Transport Layer Security” (renaming of SSL)

{9 Netscape Mo 0
1l ET F
| | | | l | |
| | | | | | |
1993 1995 1996 1999 2006 2008 August 2018
TLS V1.2 TLSVv1.3

SSLv1.0 SSLv2.0 SSLv3.0 TLS v1.0 TLS v1.1

TLS Adoption (HTTPS)

Percentage of pages loaded over HTTPS in Chrome by platform

—— Windows —— Android ~—— Chrome —— Linux —— Mac
100%
90%
80%
70% f\ / /
0% ! ~ e
50% A\
© ‘*}V \}
—
40%
30%
20%
10%
0%
Apr 01,2015 Jan 01,2016 Oct 01,2016 Apr 01,2017 Jan 01,2018 Oct 01,2018 Apr 01,2019

(Source: transparencyreport.google.com, via Matt Green)

http://transparencyreport.google.com/

Attacks on TLS Stebila » 2018-09-04 5

Attacks on TLS o

Cookie Cutter

i Debian
B POODLE Bleichenbacher OpenSSL Goldberg & —
Bleichenbacher, | entropy bug Wagner It's official: TLS 1.3 approved as

SSL2.0 Netscape standard while spies weep

Cross-protocol downgrade PRNG attack : :
; Now all you lot have to actually implement it
DH/ECDH attack FREAK, Logjam Heartbleed

(pt srsuite N va ssu
imiti 2s d ails e fie ality

By Kieren McCarthy in San Francisco 13 Aug 2018 at 22:19 26 () SHARE V¥

Collisjope
Ayp ibraries Applic. ns

Chrome, Firefox,

IE/Edge, Safari
* Web servers:
Apache, IIS,

nginx, node, ...

Triple handshake + Application

attack I) SDKs
N Certificates
Protocols

‘Ile} oj0b

modes, Vs * Negotiation * NSS
Padding * Renegotiation

Jesy3g

An overhaul of a critical internet security protocol has been completed,
with TLS 1.3 becoming an official standard late last week.

SpoouUuBl
sayoeaiq o

RC4 piases,

rc4nom0re, o ole Virtual host
Bar Mitzvah injection | microseconds confusion

TLS Protocol: Very Similar to Our Template

* |scert for Bob?
W J

* IscertinCT logs and
“ PK, SK +— Keygen

has it been revoked?
Hello [Protocols & Init]

* Does the certificate chain
have valid signatures?

cert=[PK, "Bob", o]

Alice

Verify Integrity & Keys
Pick random l (MAC (K, Dialogue))
key K
ﬁs GCM (K, Mi) >

K~Dec (SK, C

|

K

Registrar has set
Final Exam Schedule

Wed, Mar 6 from 8-10 PM

(For BOTH sections)

The End

	Slide 1: Crypto Part 3: Certificates & TLS CMSC 23200, Winter 2024, Lecture 6
	Slide 2: Outline: Crypto Part 3
	Slide 3: Template For Secure Channels (TLS, SSH, IPSec, …)
	Slide 4: Securing Key Exchange against Active Attackers
	Slide 5: Authentication with Certificates (“Certs”)
	Slide 6
	Slide 7: Securing Key Exchange against Active Attackers
	Slide 8: Outline: Crypto Part 3
	Slide 9: Issuing Certificates: Validation
	Slide 10: ACME Protocol by Let’s Encrypt
	Slide 11
	Slide 12
	Slide 13: Scaling: Intermediate CAs and Cert Chains
	Slide 14: Scaling: Intermediate CAs and Cert Chains
	Slide 15: X.509 Certificates
	Slide 16
	Slide 17: Root CA’s & Root Certificates
	Slide 18: Outline: Crypto Part 3
	Slide 19: What if attacker got a “valid” cert for uchicago.edu that has their malicious key?
	Slide 20: CA Security
	Slide 21: Sample of CA Security Incidents
	Slide 22: Countermeasure: Public-Key Pinning
	Slide 23: Countermeasure: Revocation
	Slide 24: Cert Revocation Lists (CRLs)
	Slide 25: Revocation: Online Certificate Status Protocol (OCSP)
	Slide 26: Revocation: OCSP Stapling
	Slide 27: Revocation: OCSP Stapling
	Slide 28: Certificate Transparency (CT) : How do we find rogue certs?
	Slide 29: Certificate Transparency (CT)
	Slide 30: Certificate Transparency (CT)
	Slide 31: Challenges with CT
	Slide 32: Cert Transparency & OCSP
	Slide 33: Outline: Crypto Part 3
	Slide 34: TLS in the Protocol Stack
	Slide 35
	Slide 37
	Slide 38
	Slide 39: TLS Protocol: Very Similar to Our Template
	Slide 41: Registrar has set Final Exam Schedule Wed, Mar 6 from 8-10 PM (For BOTH sections)
	Slide 42: The End

