
Grant Ho & Blase Ur

Cryptography Part 2
CMSC 23200, Winter 2023, Lecture 5

University of Chicago

Outline: Crypto Part 2

• Symmetric Key Cryptography
• Hash functions and MACs
• Authenticated Encryption (and Block Ciphers)

• Asymmetric (Public) Key Cryptography
• Public-Key Encryption
• Digital Signatures

• Hybrid Encryption: Building secure channels from scratch*

Recall: Integrity (Message Authentication Codes)

Provide integrity by attaching a MAC (tag T) to each message (D),
where the tag is:
1) Short string that validates the message D
2) Unforgeable (can’t create) without knowing secret key K

MACK()D

K

T

T←MACK(D)

D,T
K

K

Check:
T=MACK(D)?

Building Block: Hash Functions

Definition: A hash function is a deterministic function
H(…) that maps arbitrary strings to fixed-length outputs. HM H(M)

Properties of a secure hash function:

1. One-way function: given H(M), can’t find M

2. Collision resistance: can’t find M != M’ such that H(M) = H(M’)

3. Second-preimage resistance: given H(M), can’t find M’ s.t. H(M’) = H(M)

- Note: Very different from hashes used in data structures!

Why are hash collisions bad?

The binary
should hash to
3477a3498234f

Hashes to
3477a3498234f,
so let’s install!

MD5()=3477a3498234f

MD5()=3477a3498234f

Practical Hash Functions

Name Year Output Len (bits) Broken?

MD5 1993 128 Super-duper broken

SHA-1 1994 160 Yes

SHA-2 (SHA-256) 1999 256 No

SHA-2 (SHA-512) 2009 512 No

SHA-3 2019 >=224 No

Hash Functions are not MACs

Both functions map long inputs to short outputs… but hash func’s do not use a key:
Attackers can compute hash of any message they want (not unforgeable)

HM H(M) MACK()M

K

T

Intuition: a MAC is like a hash function, that only the someone w/ the key can
evaluate.

Building MACs from Hash Functions

Goal: Build a secure MAC out of a good hash function.

- Totally insecure if H = MD5, SHA1, SHA-256, SHA-512

Construction: MAC(K, D) = H(K || D) Warning: Broken

NEVER Design your own crypto algorithms, always use standard libraries!

Secure MAC: Use standard HMAC function
MAC(K, D) = H(K ⨁ opad || H(K ⨁ ipad || D))

Length Extension Attack on Insecure MACs

Construction: MAC(K, D) = H(K || D) Warning: Broken

D,T D’,T’

Adversary goal: Find new message D’ and a valid tag T’ for D’

In other words: Given T=H(K || D), find T’=H(K || D’) without knowing K.
• Attack: Can craft D’ = D || XYZ, with some string XYZ that consists of

(1) substr that attacker can freely choose and (2) substr to make attack work

In Assignment 3: Break this construction!

Outline: Crypto Part 2

• Symmetric Key Cryptography
• Hash functions and MACs
• Authenticated Encryption (and Block Ciphers)

• Asymmetric (Public) Key Cryptography
• Public-Key Encryption
• Digital Signatures

• Hybrid Encryption: Building secure channels from scratch*

Four Cryptography Problems / Tools

Confidentiality Authenticity/Integrity

Yes (“Symmetric”) Symmetric Encryption Message Authentication
Code (MAC)

No (“Asymmetric”)

Security
Goal

Pre-shared
key?

Security: Ciphertext
reveals nothing
about plaintext
message

Security: Tag for new
msg is impossible to
compute without
secret key

Authenticated Encryption

Authenticated Encryption algorithms provide both
confidentiality and integrity.

- One approach: Built using a good stream cipher and a
MAC.
- Ex: Salsa20 with HMAC-SHA2

- Best solution: Use ready-made Authenticated Encryption
- Ex: AES-GCM is the standard

Brief Detour: AES & Block Ciphers
Blockciphers: common crypto building block for solving many problems.

Informal definition: A blockcipher is essentially a
substitution cipher with a very large alphabet and a very
compact key.

Typical parameters:
Alphabet = {0,1}128

Key length = 16 bytes.

Can build many higher-level protocols from a good blockcipher.

Rijmen and Daemen
- Block length n = 128
- Key length k = 128,192,256
- 10 rounds of “substitution-

permutation network”

- Break msg M into blocks
and encrypt each block

Advanced Encryption Standard (AES)

M

⨁

P1

K1

P2

K2

P3

⨁

- NIST ran competition to develop
standard encryption algorithms in
1997

- Several submissions, Rijndael chosen
and standardized

Blockcipher Security (Confidentiality)
- AES is thought to be a good “Pseudorandom Permutation”

AESK()

x

AESK(x) rand()
x

rand(x)Vs

- Outputs all look random and independent, even when
inputs are maliciously controlled.

- Formal definition in CS284.

Advanced Encryption Standard (AES)

- AES is now the gold standard blockcipher
- Very fast; Intel & AMD CPU chips have built-in AES instructions

- AES has different modes of operation
- Some common modes: ECB, CTR, CBC, GCM
- ECB : do not use – insecure!!
- CTR & CBC do not provide integrity
- GCM: authenticated encryption (both conf & integrity)

Outline: Crypto Part 2

• Symmetric Key Cryptography
• Hash functions and MACs
• Authenticated Encryption (and Block Ciphers)

• Asymmetric (Public) Key Cryptography
• Public-Key Encryption
• Digital Signatures

• Hybrid Encryption: Building secure channels from scratch*

Motivation: If two people do not have a pre-shared secret key,
can they send private messages in the presence of an attacker?

Why do we need Public-Key Cryptography?

Confidentiality Authenticity/
Integrity

Yes (“Symmetric”) Symmetric
Encryption

Message
Authentication

Code (MAC)

No (“Asymmetric”) Public-Key
Encryption Digital Signatures

Security
Goal

Pre-shared
key?

<some bits>

M?

Message M Receive M

Formally impossible (in some sense):
No difference between receiver and adversary.

Why do we need Public-Key Cryptography?

Motivation: If two people do not have a pre-shared secret key,
can they send private messages in the presence of an attacker?

Why do we need Public-Key Cryptography?

Rivest, Shamir, Adleman
in 1978: Yes, differently!

Turing Award, 2002

Diffie and Hellman
in 1976: Yes!

Turing Award, 2015

Cocks, Ellis, Williamson
in 1969, at GCHQ:
Yes…

Motivation: If two people do not have a pre-shared secret key,
can they send private messages in the presence of an attacker?

A public-key encryption scheme consists of three algorithms:
KeyGen, Encrypt, and Decrypt

Public-Key Encryption (Confidentiality)

KeyGen

PK,SK

KeyGen: Outputs two keys.
PK published openly, and
SK kept secret.

Encrypt

C

PK

M

Decrypt

M

SK

C

Encrypt(PK, M):
Uses PK and M to produce a
ciphertext C.

Decrypt(SK, C):
Uses SK and C to recover M.

Public-Key Encryption

PK=public key
known to everyone

SK=secret key
known by Receiver only

PK

PK

SK

M C = Enc(PK,M) M

C

Goal: Passive Attacker, knows algorithm implementations (Enc, Dec) and PK,
but the ciphertext C reveals nothing about the plaintext message M
• Attacker might also have partial knowledge, e.g., other (M*, C*) pairs
• Encryption (symmetric too) not even allowed to reveal if a message repeated!

Public Key Encryption Schemes: RSA

Key Generation:

- Pick 𝑝 and 𝑞 be large random prime numbers (around 2!"#$)
- Compute 𝑁 ← 𝑝𝑞
- Set 𝑒 to a default value (𝑒 = 3 and 𝑒 = 65537 are common)
- Compute 𝑑 such that 𝑒𝑑 = 1𝑚𝑜𝑑(𝑝 − 1)(𝑞 − 1)
- Output:
- Public key 𝑝𝑘 = (𝑁, 𝑒)
- Secret key 𝑠𝑘 = (𝑁, 𝑑)

Example:
- 𝑝 = 5, 𝑞 = 11,𝑁 = 55
- 𝑒 = 3, 𝑑 = 27

Plain RSA Encryption
𝑃𝐾 = (𝑁, 𝑒) 𝑆𝐾 = (𝑁, 𝑑) 𝑁 = 𝑝𝑞, 𝑒𝑑 = 1𝑚𝑜𝑑(𝜙(𝑁))where

Encryption & Decryption:

Enc((𝑁, 𝑒), 𝑥) = 𝑥"𝑚𝑜𝑑𝑁

Dec((𝑁, 𝑑), 𝑦) = 𝑦#𝑚𝑜𝑑𝑁

Warning: BrokenNever use directly as encryption!

Using number theory from CMSC 27100, can show:
Dec(Enc((𝑁, 𝑒), 𝑥)) = (𝑥")# = 𝑥 𝑚𝑜𝑑𝑁

Note: Taking modular
roots is believed to be
computational hard

Bit-length of N Year

400 1993

478 1994

515 1999

768 2009

795 2019

Best Known Attack on RSA: Factoring
- Factoring N allows recovery of secret key… can compute 𝜙 𝑁 = (𝑝 − 1)(𝑞 − 1)
- Challenges posted publicly by RSA Laboratories

- Recommended bit-length today: 2048 or greater
- Note that fast factoring algorithms force such a large key.

- 512-bit N defeats naive factoring

Outline: Crypto Part 2

• Symmetric Key Cryptography
• Hash functions and MACs
• Authenticated Encryption (and Block Ciphers)

• Asymmetric (Public) Key Cryptography
• Public-Key Encryption
• Digital Signatures

• Hybrid Encryption: Building secure channels from scratch*

A digital signature scheme consists of three algorithms
KeyGen, Sign, and Verify

Digital Signatures Schemes (Integrity & Auth)

KeyGen

PK,SK

Sign

σ

SK

M

Verify

Accept or Reject

PK

M,σ

KeyGen: Outputs two keys.
PK published openly, and
SK kept secret.

Sign: Uses SK to produce
a “signature” σ on M.

Verify: Uses PK to check if
signature σ is valid for M.

Digital Signature Security Goal: Unforgeability

Scheme satisfies unforgeability if an Adversary (who knows
PK) cannot to fool Bob into accepting (M’, σ’) that Alice has not
sent.

PK

σ←Sign(SK,M)

M, σ M’, σ’

ACCEPT/
REJECT

Verify(PK,σ’,M’)?M
PKSK

𝑃𝐾 = (𝑁, 𝑒) 𝑆𝐾 = (𝑁, 𝑑) 𝑁 = 𝑝𝑞, 𝑒𝑑 = 1𝑚𝑜𝑑𝜙(𝑁)where

Sign((𝑁, 𝑑),𝑀) = 𝑀#𝑚𝑜𝑑𝑁

Verify 𝑁, 𝑒 ,𝑀, 𝜎 : 𝜎" = 𝑀𝑚𝑜𝑑𝑁?

“Plain” RSA Signature with No Encoding
Broken

𝑒 = 3 is common for fast verification.

KeyGen is same as regular RSA:

Sign((𝑁, 𝑑),𝑀) = 𝑀!𝑚𝑜𝑑𝑁 Verify((𝑁, 3),𝑀, 𝜎): 𝜎! = 𝑀𝑚𝑜𝑑𝑁?

“Plain” RSA Weaknesses Broken

To forge a signature on message M’: Find number σ’ such that (σ’)3=M’ mod N

Assume e=3.

Trivial Attack: Easy to forge signature for M’=1: Take σ’=1:

(σ’3)=13=1=M’ mod N

Cube-M weakness: For any M’ that is a perfect cube, it is easy to forge.
Attack: Signature σ’= ! 𝑀′ , i.e. the usual cube root of M’

Example: To forge on M’=8, which is a perfect cube, set σ’=2.

(σ’)3=23=8=M’ mod N

(Intuition: If cubing does not “wrap modulo N”, then it is easy to un-do.)

Sign((𝑁, 𝑑),𝑀) = 𝑀!𝑚𝑜𝑑𝑁 Verify((𝑁, 3),𝑀, 𝜎): 𝜎! = 𝑀𝑚𝑜𝑑𝑁?

More “Plain” RSA Weaknesses Broken

To forge a signature on message M’: Find number σ’ such that (σ’)3=M’ mod N

Assume e=3.

Malleability weakness: If σ is a valid signature for M, then it is
easy to forge a signature for new msg M’=(8M mod N),
Given (M,σ), compute forgery (M’,σ’) as

M’= (8*M mod N), and σ’=(2*σ mod N)

This is a valid pair because: Verify((N,3), M’,σ’) checks:

(σ’)3=(2*σ mod N)3 = (23*σ3 mod N) = (23*M mod N) = 8M mod N

σ3=M mod N because σ is valid sig. on M

𝑃𝐾 = (𝑁, 𝑒) 𝑆𝐾 = (𝑁, 𝑑) 𝑁 = 𝑝𝑞, 𝑒𝑑 = 1𝑚𝑜𝑑𝜙(𝑁)where

Sign((𝑁, 𝑑),𝑀) = (encode(𝑀))#𝑚𝑜𝑑𝑁

Verify 𝑁, 𝑒 ,𝑀, 𝜎 : 𝜎" = encode 𝑀 𝑚𝑜𝑑𝑁?

Secure RSA Signatures with Encodings

encode maps bit strings to numbers between 0 and N

Encoding must be chosen
with extreme care.

Broken

Authentication via Digital Signatures

PK,SK

Hey it’s me, your user Server

- “Challenge – Response” Protocol
- This and similar ideas used in SSH, TLS, etc.

Blase’s PK

Blase

σ = Sign(SK,r)

Pick random
bytes rReally? Prove it by signing r

Verify(PK,r,σ)?

Digital Signature Summary

As with all crypto schemes:
do not build your own signature schemes!

- Plain RSA signatures are very broken!
- Several secure RSA options in widely deployed libraries available:

- PKCS#1 v.1.5 is widely used, in TLS, and fine if implemented correctly
- Full-Domain Hash and PSS should be preferred

- There are also other signature schemes that aren’t based on RSA
(e.g., DSA/ECDSA)

Outline: Crypto Part 2

• Symmetric Key Cryptography
• Hash functions and MACs
• Authenticated Encryption (and Block Ciphers)

• Asymmetric (Public) Key Cryptography
• Public-Key Encryption
• Digital Signatures

• Hybrid Encryption: Building secure channels from scratch*

Why not use asymmetric crypto for
everything?

Answer

Symmetric key
crypto algorithms
are MUCH faster

Confidentiality Authenticity/Integrity

Yes (“Symmetric”) Symmetric Encryption Message Authentication
Code (MAC)

No (“Asymmetric”) Public-Key Encryption Digital Signatures

Security
Goal

Pre-shared
key?

Hybrid Encryption: Real-world Secure Channels
Strategy:
1. Alice & Bob use a key exchange protocol to share their secret

key(s)
2. Alice & Bob then use symmetric authenticated encryption (fast)

for all their msg’s
Key Exchange

AES-GCM(K,M1)

AES-GCM(K,M2)

AES-GCM(K,M3)

…

Key Exchange Protocols

Options
1. Use public-key crypto algorithms (RSA encryption & signatures)
2. Use dedicated key exchange algorithms (Diffie-Hellman):

Faster & recommended approach (e.g., TLS, SSH)

Key Exchange

AES-GCM(K,M1)

AES-GCM(K,M2)

AES-GCM(K,M3)

…

Key Exchange using Public Key Crypto
Goal: Establish secret key K to use with Authenticated Encryption.

KeygenPK,SK

PK

(KeyGen, Enc, Dec) is a public-key encryption scheme.

Pick random
AES key K

C = Enc(PK,K)

K is the
message

K
K

K←Dec(SK,C)

AES-GCM(K,Mi)

(Passive Attacker)

Key Exchange using Public Key Crypto
Q: How do we make this secure against an active attacker?

A: Certificates w/ Signatures (Next Lecture)

KeygenPK,SK

PK … PK’

Pick random
AES key K

C = Enc(PK',K)

K
K

K←Dec(SK,C)

AES-GCM(K,Mi)

(Active Attacker)

C = Enc(PK,K)

K

The End

