
Grant Ho and Blase Ur

Crypto Part 1
(and Software Defenses Wrap-up)

CMSC 23200, Winter 2024, Lecture 4

University of Chicago

Assignment 2: Logistical Note

For Problem 4, your solution cannot
involve executing any code placed on the stack!

• Currently: configuration error in the VMs that makes
Target 4’s stack executable.

• However, grading will run your solution against Target 4 with a
non-executable stack, so your solution cannot use any
shellcode on the stack.

• Advice: Implement a return-to-libc attack (as per the instructions)

Outline: Crypto + Software Security Wrap-up

1. Memory Safety Defenses

• Fuzzing

• Memory Safe Languages

2. Crypto Part 1: Symmetric Key Cryptography

Program Fuzzing: Find bugs before release
Idea: Developer runs their program on huge number of automatically-generated inputs,
searches for crashes, and fixes bugs before releasing software

"A few weeks ago, my kids wanted to hack my Linux desktop, so they typed
and clicked everywhere while I was standing behind them looking at them
play," wrote a user identifying themselves as robo2bobo.

According to the bug report, the two kids pressed random keys on both the
physical and on-screen keyboards, which eventually led to a crash of the Linux
Mint screensaver, allowing the two access to the desktop.

"I thought it was a unique incident, but they managed to do it a second time,"
the user added.

Two Types of Fuzzing Strategies

Mutation-based (dumb): Take an initial set of examples (program inputs) and
make random changes to them.

- Millions of inputs (can run fuzzing forever)

- Possibly lower quality, unlikely to find certain bugs / types of inputs

Generative (smart): Describe inputs to fit format/protocol, then generate inputs
from that grammar with changes.

- Run with fewer inputs, which can be directed to certain bug types or code
logic

Problems with Fuzzing

Mutation-based (dumb): How long to run? And we need a strong server.

Generative (smart): Run out of test cases. A lot more work.

General problems:

• Need to identify when bug/crash occurs automatically.

• Don’t want to report same bug 1000s of times.

• How do we prioritize bugs?

Fuzzing in Production

AFL: Popular open-source fuzzer released by Google

Google/Microsoft constantly fuzz products with dedicated servers/VMS.

Anecdote: Found 95 vulnerabilities in Chrome during 2011.

Memory-Safe Languages
Many of our problems can be solved by using “memory-safe” languages.

• The programming model for these languages does not allow for such bugs
(e.g., no access to pointers / mem addr’s and built-in object bounds checking).

Not Memory-Safe Memory Safe
C Java

C++ Python

Assembly Javascript

Rust, Go, Haskell, …

Ideally, we’d avoid writing programs in unsafe languages, but lots of legacy code
(and low-level stuff) are written in C/C++.

Pre-deployment, before the program runs: find or prevent bugs
- Fuzzing: proactively finding & fixing bugs by testing many program inputs
- Memory safe languages: automatically avoid exploitable memory bugs
- Done by the application developer

Program runtime: stopping exploits / violations of program’s memory
- Stack Canaries, ASLR, DEP/W+X, etc.
- Implemented by the compiler (stack canary) or operating system (ASLR, W+X)
- Attacks adapt & evolve (Stack reading, ROP attacks, etc.)

Post-exploitation (not covered): limit possible damage from compromise
- Sandboxing and VMs
- Done by user/admin of the system or the app developer (e.g., web browsers)

Recap: Software Defenses

Cryptography: Part 1

(Slides adapted from David Cash and Dan Boneh)

Outline: Cryptography Part 1

1. Memory Safety Defenses

• Fuzzing and Memory Safe Languages

2. Symmetric Key Cryptography

• Common goals & Threat models

• Encryption & Basic ciphers

• One-time pads and Secure encryption

• Stream ciphers

• Message Authentication Codes (MACs)

What is Cryptography (for CMSC 23200)?

Cryptography develops algorithms that achieve security goals (CIA).

Cryptography involves using math / theory to stop adversaries.

This Course:
- A brief overview of major crypto concepts and tools
- Cover (some) big “gotchas” in crypto deployments

- Not going to cover math, proofs, or many theoretical details.
Consider taking CS284 (Cryptography)!

Common High-Level Goal: Create a Secure Channel

Client ServerSecure channel

𝑚! 𝑚"

𝑚!𝑚"

Goal: Attacker does not learn anything about the contents of
messages and cannot tamper with their contents.

Example 1: Secure communication
(protecting data in motion)

Unable to learn contents or
tamper with data

Alice

Bank of America

Example 2: Protected files
(protecting data at rest)

File system

File 1

File 2

Alice
T=0

Alice
T=1

Unable to learn contents
or tamper with data (file)

Three Key Security Goals of Cryptography

1. Confidentiality: an attacker cannot learn the contents of our data

2. Integrity: an attacker cannot modify the contents of our data

3. Authentication: an attacker cannot masquerade as someone else,
or make us believe their message/data was sent by someone else

Four Cryptography Problems / Tools

Confidentiality Authenticity/Integrity

Yes
(“Symmetric”)

No
(“Asymmetric”)

Security
Goal

Pre-shared
key?

Four Cryptography Problems / Tools

Confidentiality Authenticity/Integrity

Yes
(“Symmetric”) Symmetric Encryption

Message
Authentication Code

(MAC)

No
(“Asymmetric”)

Security
Goal

Pre-shared
key?

Four Cryptography Problems / Tools

Confidentiality Authenticity/Integrity

Yes
(“Symmetric”) Symmetric Encryption

Message
Authentication Code

(MAC)

No
(“Asymmetric”) Public-Key Encryption Digital Signatures

Security
Goal

Pre-shared
key?

Outline: Cryptography Part 1

1. Memory Safety Defenses

• Fuzzing and Memory Safe Languages

2. Symmetric Key Cryptography

• Common goals & Threat models

• Encryption & Basic ciphers

• One-time pads and Secure encryption

• Stream ciphers

• Message Authentication Codes (MACs)

𝑚
𝐶𝐾

𝑚
𝐾Encrypt Decrypt

Ciphers (a.k.a. Symmetric Encryption)

• Encryption algorithm: Encrypt(K, m) = c

• Convert a plaintext message m, into an encrypted message c (ciphertext)

• Decryption algorithm: Decrypt(K, c) = m

• Convert a ciphertext c, back into its plaintext message m

A cipher is a pair of algorithms Encrypt, Decrypt:

Alice Bob

Encryption: Providing Confidentiality

Threat Model: Passive attacker

• Adversary see the ciphertexts, but they cannot modify them in any way

• Attacker’s goal: learn something about plaintext messages from ciphertexts

Today’s Lecture: Symmetric key setting:

• Alice & Bob already have a shared secret key, K, that the attacker does not know

𝑚
𝐶𝐾

𝑚
𝐾Encrypt DecryptAlice Bob

𝑚
𝐶𝐾

𝑚
𝐾Encrypt Decrypt

Ciphers (a.k.a. Symmetric Encryption)

Requirements of a Secure Cipher:

• Correctness: decryption recovers the same message.

• Encrypt(K, m) = c and Decrypt(K, c) = m

• Confidentiality (Security): the ciphertext c reveals nothing about the
message m (other than the message length)

A cipher is a pair of algorithms Encrypt, Decrypt:

Alice Bob

Historical Cipher: ROT13 (“Caesar cipher”)

Plaintext: DEFGH
Key (shift): 2
Ciphertext: FGHKL

Encrypt(K,m): shift each letter of plaintext forward by K
positions in the alphabet (wrap from Z to A).

Plaintext: ATTACKATDAWN
Key (shift): 13
Ciphertext: NGGNPXNGQNJA

Historical Cipher: Substitution Cipher

Encrypt(K,m): The key K is a permutation π on {A,… Z}.
Apply π to each character of m to create c

M: ATTACKATDAWN
K: π
C: ZKKZAMZKYZGT

x π(x)

A Z

B U

C A

D Y

E R

F E

G X

H B

I D

J C

K M

L Q

M H

N T

O I

How many keys?
26! ≈ 288

9 million years to try all keys at rate of 1
trillion/sec

Q: Is this secure?

Cryptanalysis of Substitution Cipher

Distribution of letters in English
text is not uniform:
• Can guess letters in a long msg

by computing their frequency

Outline: Cryptography Part 1

1. Memory Safety Defenses

• Fuzzing and Memory Safe Languages

2. Symmetric Key Cryptography

• Common goals & Threat models

• Encryption & Basic ciphers

• One-time pads and Secure encryption

• Stream ciphers

• Message Authentication Codes (MACs)

Quick recall: Bitwise-XOR operation

We will use bit-wise XOR:
0101
1100⨁
1001

Some Properties:
• X⨁Y = Y⨁X
• X⨁X = 000…0
• X⨁Y⨁X = Y

Cipher Example: One-Time Pad (OTP)

Key K: Bitstring of length L

Plaintext M: Bitstring of length L

Encrypt(K,M): Output K⨁M Example:
0101 (K)
1100 (M)⨁
1001 (C)Decrypt(K,C): Output K⨁C

Correctly decrypts because
K⨁C = K⨁(K⨁M) = (K⨁K)⨁M = M

Q: Is the one-time pad secure?
Bigger Q: What does “secure” even mean?

Evaluating Security of Crypto Algorithms

Kerckhoff’s Principle:
Assume the adversary knows your algorithms and
implementation. The only thing they don’t know is the key.

Example:
- Adversary knows you are running SSH, and they know logic/code of all the

ciphers that SSH allows (e.g., by downloading the open-source software
itself)

- But they do not know the keys that Alice & Bob use

Adversary Goal: Break Confidentiality

𝐶!, … , 𝐶"𝐾
𝑚!, … ,𝑚" ⁄𝑚 ⊥

𝐾

The adversary sees ciphertexts and attempts to recover
some “useful information” about plaintexts.

Other attack settings are important
(e.g. adversary can ask for some encryptions, some decryptions…)

Partial Knowledge & Recovering Partial Information

- Recovering entire messages is useful
- But recovering partial information is also be useful &
dangerous

- Attacker may know large parts of plaintext already (e.g.
formatting strings or application content).
The attacker tries to obtain something it doesn’t already know.

M = http://site.com?password=▮▮▮▮▮▮▮▮

A lot of information is
missing here.

But can we say who this is?

Secure Encryption Goal

An attack is successful as long as it recovers any new info
about the plaintext that is useful to the adversary.

Encryption must hide all possible partial information about
plaintexts, since what is useful or dangerous is situation-
dependent.

Attacks can succeed without recovering the key

𝐶!, … , 𝐶"𝐾
𝑚!, … ,𝑚" ⁄𝑚 ⊥

𝐾

Full break: Adversary recovers K, decrypts all ciphertexts.

However: Clever attackers may learn plaintext information from
ciphertexts without recovering the key.
If so, the attack has succeeded / encryption algorithm is insecure.

Security of the One-Time Pad (OTP)

One-time pad: if an adversary sees only one ciphertext under a
random key, then any plaintext is equally likely, so they cannot
recover any partial information besides the plaintext length.

Ciphertext observed:
Possible plaintext:
⇒ Possible key:

10111
00101
10010

1. Adversary goal: Learn partial information from plaintext
2. Adversary capability: Observe a single ciphertext
3. Adversary compute resources: Unlimited time/memory (!)

Issues with One-Time Pad (OTP)

1. Reusing a pad is insecure
2. One-Time Pad has a long key

Issue #1: Reusing a One-Time Pad is Insecure

HELLOALICE

Pad (Key)

C1

⨁

=

PWDHAMSTER

Pad (Key)

C2

⨁

=

HELLOALICE Pad

⨁

PWDHAMSTER

=

⨁

=
Pad

Issue #1: Reusing a One-Time Pad is Insecure

GO_TO_THE

Pad

C1

⨁

=

RIVER_AT_2

Pad

C2

⨁

=

C1 ⨁ C2

= GO_TO_THE RIVER_AT_2⨁

Has led to real attacks:
- Project Venona (1940s) attack by US on Soviet encryption
- MS Windows NT protocol PPTP
- WEP (old WiFi encryption protocol)
- Fortiguard routers! [link]

https://seclists.org/bugtraq/2019/Nov/38

Issue #2: One-Time Pad Needs a Long Key

By definition: OTP needs Key-length ≥ Plaintext-length
• Long message = long key required

In practice:
- Use stream cipher: Encrypt(K,m) = G(K)⊕m
- Use nonces to encrypt multiple messages
(ensures that even if we send same msg twice, the
ciphertext is different)

Outline: Cryptography Part 1

1. Memory Safety Defenses

• Fuzzing and Memory Safe Languages

2. Symmetric Key Cryptography

• Common goals & Threat models

• Encryption & Basic ciphers

• One-time pads and Secure encryption

• Stream ciphers

• Message Authentication Codes (MACs)

Tool to address key-length of OTP: Stream Ciphers

Key Idea: Given a random key, K, create an extremely large
pseudo-random string that can be used as a one-time pad
• Cryptographic functions called pseudo-random number

generators (PRNGs) that can do this

Tool to address key-length of OTP: Stream Ciphers

Stream cipher syntax: Algorithm G that takes one (smaller) input
and produces a very long bit-string as output.

1100..11

11111010001000111010100101000101100100111100…

G

⨁ DONUTSDONUTSDONUTSDONUTSDONUTSDONUTSDONUTSDON

Use G(key) as the one-time pad.
• Can now encrypt messages much longer than the key.

Typically 16 or 32 bytes.Usually very, very large
(petabytes if needed)

Key (Seed) k:

G(k):

Stream Cipher Security Goal (Sketch)

Security goal: When k is random and unknown, G(k) should “look” random.

… even to an adversary spending a lot of computation.

Much stronger requirement that “passes statistical tests”.

Brute force attack: Given y=G(k), try all possible k and see if you get the
string y.

Clarified goal: When k is random and unknown, G(k) should “look” random to
anyone who can’t run a brute force attack.

(key length = 256-bits is considered strong now)

Practical Stream Ciphers (Not covered in this class)

RC4 (1987): “Ron’s Cipher #4”. Mostly retired by 2016
(insecure).

ChaCha20 (2007): Successfully deployed replacement.
Supports nonces.

Sending Multiple Messages w/ Stream Ciphers: Pad Reuse?

m1

⨁ G(k)

k

k

ciphertext

…

m2

⨁

ciphertext

G(k)

Addressing pad reuse: Stream cipher with a nonce

- “nonce” = “number once”.
- Usually denoted IV = “initialization vector”

Stream cipher with a nonce: Algorithm G that takes two
inputs and produces a very long bit-string as output.

1100..11

11111010001000111010100101000101100100111100…

1100..11

Key/Seed k:Nonce IV:

G(IV,k):

Security goal: When k is random and unknown, G(IV,k) should “look” random
and independent for each value of IV.

Solution 1: Stream cipher with a nonce

m1

⨁ G(IV,k)

k

k

ciphertext

IV←0

IV

IV←IV+1

…

m2

⨁

ciphertext

G(IV,k)

IV

- If nonce repeats, then pad repeats

Example of Pad Re-use: WEP Warning: Broken

IEEE 802.11b WEP: WiFi security standard ’97-‘03

IV

IV is 24-bit wide counter

- Repeats after 224 frames (≈16 million)
- IV is often set to zero on power cycle

Solutions: (WPA2 replacement)
- Larger IV space, or force rekeying more often
- Set IV to combination of packet number, address, etc

Example of Pad Re-use: WEP Warning: Broken

IEEE 802.11b WEP: WiFi security standard ’97-‘03

IV

IV is 24-bit wide counter

- Repeats after 224 frames (≈16 million)
- Often set to zero on reset

Solutions: (WPA2 replacement)
- Larger IV space, or force rekeying more often
- Set IV to combination of packet number, address, etc

Issues with One-Time Pad

1. Reusing a pad is insecure

2. One-Time Pad needs a long key

Use unique nonces

Use stream cipher with short key

Outline: Cryptography Part 1

1. Memory Safety Defenses

• Fuzzing and Memory Safe Languages

2. Symmetric Key Cryptography

• Common goals & Threat models

• Encryption & Basic ciphers

• One-time pads and Secure encryption

• Stream ciphers

• Message Authentication Codes (MACs)

Integrity: Message Authentication Codes (MACs)

• Encryption provides confidentiality:
a passive attacker can’t learn anything about the data
we’re storing or using

• Integrity: an (active) attacker cannot tamper with the
data in an undetectable manner

• i.e., allows user to check if the data they received is
exactly what was sent or if it has been modified

Integrity: New Threat Model (Active Attacker)

Threat model: Active attacker that can tamper with
communication

• Attacker not only sees all ciphertexts, but can also actively
modify ciphertexts during transmission, inject their own data as
additional “ciphertexts”, reorder or delete ciphertexts

• Often known as a Man-in-the-Middle (MITM) attacker

𝐶!, … , 𝐶" 𝐶#$, … , 𝐶!

OTP & Stream Ciphers Do Not Provide Integrity

PAYALICE$1

Pad

C

⨁

=

=
C’

⨁
000ALICE00

000DAVID00
⨁

Decrypt(Pad, C’) = PAYDAVID$1

Stream ciphers do not give integrity

C = b0595fafd05df4a7d8a04ced2d1ec800d2daed851ff509b3e446a782871c2d

M = please pay ben 20 bucks

C’= b0595fafd05df4a7d8a04ced2d1ec800d2daed851ff509b3e546a782871c2d

M’ = please pay ben 21 bucks

Encryption alone does not provide integrity
(fundamentally not designed to)

Providing Integrity: Message Authentication Code

Idea: Append a special tag to each message that
(1) validates the message content (different msg = different
tag) and (2) can only be computed if a user knows the secret
key K

Providing Integrity: Message Authentication Code

A message authentication code (MAC) is an algorithm that
takes as input a key and a message, and outputs an
“unpredictable” tag.

MACK()D

K

T

T←MACK(D)

D,T
K

K

Check:
T=MACK(D)?

D will usually be a ciphertext, but is often called a “message”.

MAC Security Goal: Unforgeability

T←MACK(D) D,T D’,T’

“ACCEPT”
or “ERROR”

MAC satisfies unforgeability if it is infeasible for Adversary to
fool Bob into accepting D’ and T’as a valid (msg, MAC)
pair,
for a D’that has not been previously seen

T’=MACK(D’)?

Alice Bob

MAC Security Goal: Unforgeability

Unforgeability: Attacker cannot create T’ for any new D’.

MACs do NOT need to provide any confidentiality (no encryption on this slide)

T = 827851dc9cf0f92ddcdc552572ffd8bc

D = please pay ben 20 bucks

D’= please pay ben 21 bucks

D,T D’,T’

T’= baeaf48a891de588ce588f8535ef58b6

MACs In Practice: Use HMAC or Poly1305-AES

- More precisely: Use HMAC-SHA2. More on hashes next lecture

- Other, less-good option: AES-CBC-MAC (bug-prone)

Authenticated Encryption

Encryption that provides confidentiality and integrity is
called Authenticated Encryption.

- Built using a good stream cipher and a MAC.
- Ex: Salsa20 with HMAC-SHA2

- Best solution: Use ready-made Authenticated Encryption
- Ex: AES-GCM is the standard

The End

