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Today’s Class

1. Memory Safety Attacks: 
How can attackers exploit software bugs to force a program to run code 
or commands they want?

2. Memory Safety Protections: 
How can we prevent these kinds of software attacks or minimize the 
damage they can do?



Outline: Memory Safety: Attacks & Defenses

1. Review: Memory layout and function calls in a process

2. Attacks:

1. Stack-based buffer overflow attacks

2. Heap vulnerabilities (briefly)

3. Defenses:

1. Stack Canaries

2. Address-Space Layout Randomization (ASLR)

3. W ^ X and ROP

4. Fuzzing and Memory Safe Languages



The Stack and Calling a Function in C
Virtual Memory

fff…f

000…0

stack

env

What happens to memory when you call foo(a,b)?
- A “stack frame” is added (esp & ebp move up)
- Instruction pointer eip moves to code for foo

prev frame

prev arg

saved eip

saved ebp

prev local

arg a

arg b

saved eip

saved ebp

local d

new frame
}
}

esp

main

foo

eip

ebp

int foo(int a, int b) {
int d = 1;
return a+b+d;

}

int main(…) {
…
int x = foo(5, 6);
…

}



Returning from a function
Virtual Memory

fff…f

000…0

stack

env

What happens after code of foo(a,b) is finished?
- Pop the function’s stack frame (move esp to ebp)
- Pop (moves) saved ebp into ebp register
- RET: Pop saved eip into eip register

(CPU assumes ebp was pointing right above the saved eip) 
- Caller (main) pops foo’s arg from the stack

prev frame
arg a

arg b

saved eip

saved ebp

local d

prev arg

saved eip

saved ebp

prev local

new frame
}
}

main

foo

esp

eip

ebp

int foo(int a, int b) {
int d = 1;
return a+b+d;

}

int main(…) {
…
int x = foo(5, 6);
…

}



Returning from a function
Virtual Memory

fff…f

000…0

stack

env

What happens after code of foo(a,b) is finished?
- Pop the function’s stack frame (move esp to ebp)
- Pop (moves) saved ebp into ebp register
- RET: Pop saved eip into eip register 
- Caller (main) pops foo’s arg from the stack

prev frame
arg a

arg b

saved eip

saved ebp

local d

prev arg

saved eip

saved ebp

prev local

new frame
}
}

main

foo

esp

eip

ebp

Key Point:
The CPU determines 
what code & data to 

execute next, based on 
values stored on the stack



Outline: Memory Safety: Attacks & Defenses

1. Review: Memory layout and function calls in a process

2. Attacks:

1. Stack-based buffer overflow attacks

2. Heap vulnerabilities (briefly)

3. Defenses:

1. Stack Canaries

2. Address-Space Layout Randomization (ASLR)

3. W ^ X and ROP

4. Fuzzing and Memory Safe Languages



Classic Attack: Overflowing a buffer on the stack
Function bad copies a string into a 64 character buffer.
— strcpy continues copying until it hits NULL character!
— If s points to longer string, this overwrites rest of stack frame.
— Most importantly saved eip is changed, altering control flow.

void bad(char *s) {
char buf[64];
strcpy(buf, s);

}



Classic Attack: Overflowing a buffer on the stack
Function bad copies a string into a 64 character buffer.
— strcpy continues copying until it hits NULL character!
— If s points to longer string, this overwrites rest of stack frame.
— Most importantly saved eip is changed, altering control flow.

void bad(char *s) {
char buf[64];
strcpy(buf, s);

}

local buf

<buf cont.>

<buf cont.>

…

<buf cont.>

arg s

saved eip

saved ebp

Frame before strcpy

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

Frame after strcpy

saved eip should be here!
AAAA=0x41414141 will be used 

as return address

s=“AAAA…AAAA” (70 or more characters)



Classic Attack: Overflowing a buffer on the stack
Function bad copies a string into a 64 character buffer.
— strcpy continues copying until it hits NULL character!
— If s points to longer string, this overwrites rest of stack frame.
— Most importantly saved eip is changed, altering control flow.

void bad(char *s) {
char buf[64];
strcpy(buf, s);

}

local buf

<buf cont.>

<buf cont.>

…

<buf cont.>

arg s

saved eip

saved ebp

Frame before strcpy

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

Frame after strcpy

saved eip should be here!
AAAA=0x41414141 will be used 

as return address

s=“AAAA…AAAA” (70 or more characters)

SEGFAULT!What will happen?

eip

Virtual Memory

fff…f

000…0

stack

env

foo

main

414…1



How to exploit a stack buffer overflow
Suppose attacker can cause bad to run with an s it chooses.
- Step 1: Set correct bytes to point back to input(!)

void bad(char *s) {
char buf[64];
strcpy(buf, s);

}

local buf

<buf cont.>

<buf cont.>

…

<buf cont.>

arg s

saved eip

saved ebp

Frame before strcpy

AAAA

AAAA

AAAA

AAAA

AAAA

AAAA

0xbffff624

AAAA

Frame after strcpy

Well-chosen characters used as 
an address when overwriting 

the saved eip!

What will happen?

s=“AAAAA…AAAA\x24\xf6\xff\xbfAAA…”

0xbffff624

Illegal instruction!



How to exploit a stack buffer overflow
Suppose attacker can cause bad to run with an s it chooses.
- Step 1: Set correct bytes to point back to input(!)
- Step 2: Make input executable machine code(!)

local buf

<buf cont.>

<buf cont.>

…

<buf cont.>

arg s

saved eip

saved ebp

Frame before strcpy

<code>

<code>

<code>

<code>

<code>

AAAA

0xbffff624

<code>

Frame after strcpy

saved eip

What will happen?

s=“<machine code>\x24\xf6\xff\xbfAAA…”

0xbffff624

void bad(char *s) {
char buf[64];
strcpy(buf, s);

}

Program runs attacker’s 
code once the function 

(bad) returns!



What to put in for <code>?
The possibilities are endless!
— Spawn a shell
— Spawn a new service listening to network
— Change files
— …

But wait… what about NULL bytes?

Solution: Find machine instructions with no NULLs!
— Can even find machine code with all alpha bytes.

<code>

<code>

…00
<unchanged>

<unchanged>

AAAA

saved eip

saved ebp

Frame after strcpy

s=“<machine code>\x24\xf6\xff\xbfAAA…”

strcpy
stopped here,
saving victim :(

(code contains 0x0)



Example Shellcode

char shellcode[] = 
“\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
“\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xff\xff\xff/bin/sh";

#include <stdio.h> 
void main() { 
char *name[2]; 
name[0] = “/bin/sh";
name[1] = NULL; 
execve(name[0], name, NULL); 

}

Basically equivalent to:



Finally, where did that magic address come from?

Assignment: GDB is your friend J

Two challenges:
— Need that address to jump to beginning of shellcode
— Need to precisely place it to overwrite saved EIP

<code>

<code>

<code>

<code>

<code>

AAAA

0xbffff624

<code>
saved eip

0xbffff624

s=“<code>\x24\xf6\xff\xbfAAA…”

void bad(char *s) {
char buf[64];
strcpy(buf, s);

}



Technique #1: NOP Sleds
— Instruction 0x90 is “xchg eax, eax”, i.e. does not thing. This is a “No Op” or “NOP”.
— Just add a ton of NOPs (as many as you can, even many MB) and hope pointer lands there

<code>

<code>

<code>

<code>

<code>

AAAA

0xbffff624

<code>

saved eip

0xbffff624

0x90909090

…

0x90909090

0x90909090



Technique #2: Placing malicious EIP
— Simple: Just copy it many times

<code>

<code>

<code>

<code>

<code>

0xbffff624

<code>

0x90909090

…

0x90909090

0x90909090

0xbffff624

…

0xbffff624

saved eip

0xbffff624



Brief Recap: Stack Buffer Overflows

• Bugs in code can allow attackers to bypass OS security and access control policies 

• The CPU stores critical “control flow” information on the stack

• Saved EIP & Saved EBP: controls what the CPU does after a function returns

• Buffer overflow attack: vulnerable program doesn’t check if a (stack) buffer 
has enough space to hold copied data

• Attacker can provide input that overflows buffer & has: {malicious code} + 
{new return address, that points to the malicious code}

• After returning from current function, the CPU will run the attacker’s code, 
instead of the program’s actual code



Heap Memory: Many Kinds of Vulnerabilities

heap_buf

Heap

0x111…1
func ptr

code
foo(…)

Heap (after overflow)

Heap overflow attacks can also 
overwrite variables that get used 
later in code 
(e.g., admin = False -> admin = 
True)

Many other heap bugs:
• Use-after-free,
• Double Free, 
• Corrupting metadata…

shellcode

0x555…5
func ptr

Initially, the program has:
• A heap variable (heap_buf)
• A function pointer allocated on 

the heap that points to foo(…)

Attack:
• Overflowing heap_buf can 

overwrite the heap func ptr
• Later, when program calls the 

func ptr, it will execute the 
attacker’s code in heap_buf Text Text

code
foo(…)

555…5

111…1



Outline: Memory Safety: Attacks & Defenses

1. Review: Memory layout and function calls in a process

2. Attacks:

1. Stack-based buffer overflow attacks

2. Heap vulnerabilities (briefly)

3. Defenses:

1. Stack Canaries

2. Address-Space Layout Randomization (ASLR)

3. W ^ X and ROP

4. Fuzzing and Memory Safe Languages



Countermeasure #1: Stack Canaries





Stack Canaries (a.k.a. Stack Protectors)

arg a

arg b

saved eip

saved ebp

local d

arg a

arg b

saved eip

saved ebp

local d

canary

Standard frame Frame with canary

• Idea: Try to detect if stack data is corrupted, before using it after the function returns.

• Compiler inserts additional instructions (code) to each function:
• At the start of every function, push a “canary” value onto stack between local 

variables and saved ebp/eip
• Before returning, additional code checks if canary value is still correct; If not, 

ABORT.

arg a

…

AAAA

AAAA

AAAA

AAAA

After overflow
Incorrect!
Detected 
before return.



How should we (defender) pick the canary value?

Null: Set to 0x00000000. Hard for attacker to copy NULLs onto stack.

Terminator: 0x000d0aff (for example.) 0x0d=CR, 0x0a=LF, 0xff=EOF. Some buggy 
code will stop at these characters.

Random: Process chooses random value at start, uses same value in every call.

arg a

arg b

saved eip

saved ebp

local buf

canary

Frame with canary

bfbb…

---

---

0xbfbb…

---

shellcode

canary

Successful Overflow Requirement

bfbb…



Flag Default? Notes

-fno-stack-protector No Turns off protections

-fstack-protector Yes Adds to funcs that call alloca() & w/ arrays larger than 
8 chars (--param=ssp-buffer-size changes 8)

-fstack-protector-strong No Also funcs w/ any arrays & refs to local frame 
addresses. Introduced by ChromeOS team.

-fstack-protector-all No All funcs

Stack Canaries in gcc

• With -fstack-protector, 2.5% of functions in kernel covered, 0.33% larger binary

• With -fstack-protector-strong, 20.5% of functions in kernel covered, 2.4% larger 
binary



Related ProPolice Feature: Rearranging Locals

• gcc puts local arrays below other locals, even if declared in other order

arg a

arg b

saved eip

saved ebp

local buf[]

canary

…

local buf[]

local *p

int foo(…) {
char *p;
char buf[64];
…

}

int foo(…) {
char buf[64];
char *p;
…

}

vs

arg a

arg b

saved eip

saved ebp

local buf[]

canary

…

local buf[]

local *p



Bypassing Canaries via Complex Bugs

arg s1

arg s2

saved eip

saved ebp

local buf[]

canary

…

local buf[]

local *p

int foo(char *s1, char *s2) {
char *p;
char buf[64];
p = buf;
strcpy(p, s1); // oh no :(
…
strncpy(p, s2, 16);
…

}



Bypassing Canaries via Complex Bugs

arg s1

arg s2

saved eip

saved ebp

shellcode

canary

…

shellcode

local *p

int foo(char *s1, char *s2) {
char *p;
char buf[64];
p = buf;
strcpy(p, s1); // oh no :(
…
strncpy(p, s2, 16);
…

}

Attacker crafts s1 to:

1) Fill buff with shellcode
2) Overwrite p to point to the saved eip

(by overflowing one word longer than buf)



Bypassing Canaries via Complex Bugs

arg s1

arg s2

saved eip

saved ebp

shellcode

canary

…

shellcode

local *p

int foo(char *s1, char *s2) {
char *p;
char buf[64];
p = buf;
strcpy(p, s1); // oh no :(
…
strncpy(p, s2, 16);
…

}

Attacker crafted s2 to:

• Point into buf
(where shellcode was copied)



Bypassing Canaries via “Reading the Stack”

Request that contains overflow

Response or crash

Web server fork()'s
child to handle request

Child inherits same
random canary value
0xXXYYZZWW.

saved eip

saved ebp

local buf[]

XX YY ZZ WW

…

local buf[]

saved eip

saved ebp

local buf[]

XX YY ZZ WW

…

local buf[]

XX

Overflow 1 byte and observe if process crashes.

• If no crash: we guessed that canary byte value 
correctly!

• Learn byte XX after max of 256 tries! Repeat for rest.



Another Similar Countermeasure: Shadow Stacks

arg

arg

saved eip1

saved ebp1

canary

local

local

saved eip1

saved eip2

saved ebp2

local

canary

local

local

local

saved eip2

Parallel Shadow Stack

Idea: Have the compiler add additional 
code to each function that:

• Makes a copy of func’s saved eip in 
separate memory segment (outside 
stack)

• Checks whether func’s saved eip on 
the stack matches this “shadow” 
copy before returning



Outline: Memory Safety: Attacks & Defenses

1. Review: Memory layout and function calls in a process

2. Attacks:

1. Stack-based buffer overflow attacks

2. Heap vulnerabilities (briefly)

3. Defenses:

1. Stack Canaries

2. Address-Space Layout Randomization (ASLR)

3. W ^ X and ROP

4. Fuzzing and Memory Safe Languages



Address-Space Layout Randomization (ASLR)

Idea: OS makes it hard to know / guess function return addresses 
(what value the attacker should overwrite the saved eip with)

Linux PaX implementation:

• OS adds random offsets in green areas
(location of stack, heap and text)

• 16 bits, 16 bits, 24 bits or randomness respectively

Virtual Memory

.text

.data

.bss

stack

heap

env

libc

Possible attacks:

• Huge NOP sleds + Copy shellcode many times in heap.

• Side channels (or printf bugs) can leak random choice

• Brute force with large number of forks

Modern machines have 64-bit addresses, making ASLR 
stronger.



Outline: Memory Safety: Attacks & Defenses

1. Review: Memory layout and function calls in a process

2. Attacks:

1. Stack-based buffer overflow attacks

2. Heap vulnerabilities (briefly)

3. Defenses:

1. Stack Canaries

2. Address-Space Layout Randomization (ASLR)

3. W ^ X and ROP Attacks

4. Fuzzing and Memory Safe Languages



W ^ X (“Write XOR Execute”)
Virtual Memory

.text

.data

.bss

stack

heap

libc

OS will mark each memory segment* as either writeable or executable, 
but never both.

• Modern hardware support: x64 (the x86 successor)

• All major OS implement (PaX/ExecShield - Linux, DEP - Windows, …)

• Also used in virtual machine / sandboxes

Perms
r,x

r

r,w

r,w

r,x

r,w

Idea: Code should not be writable & Data should not be executable 
• e.g., stack memory = writable, but not executable



Virtual Memory

.text

.data

.bss

stack

heap

libc

arg s1

arg s2

saved eip

saved ebp

local buf[]

…

local buf[]Perms
r,x

r

r,w

r,w

r,x

r,w

Bypassing W ^ X: Return-to-libc



Bypassing W ^ X: Return-to-libc
Virtual Memory

.text

.data

.bss

stack

heap

libc

target args

xxxx

new eip

xxxx

xxxx

xxxx

local buf[]

The Attack:

• Overwrite eip to point to target func in libc (system)

• Overwrite stack to setup args for the target func

• Result: Function is called w/ specific args!

Perms
r,x

r

r,w

r,w

r,x

r,w



Bypassing W ^ X: Return-to-libc Details

Attack Goal: Spawn shell for attacker, e.g., system(“/bin/sh/”)

• Overwrite eip to point to target func in libc (system)

• Overwrite stack to setup args for target func(“/bin/sh”)

new args

AAAA

new eip

AAAA

AAAA

AAAA

AAAA

libc

malloc()

printf()

system()

“/bin/sh”

(Somewhere in memory)

arg s1

arg s2

saved eip

saved ebp

local buf[]

…

local buf[]

foo(…) before 
overflow

foo(…) after 
overflow



Bypassing W ^ X: Return-to-libc Details

args

saved eip

saved ebp

local var

Attack Goal: Spawn shell for attacker, e.g., system(“/bin/sh/”)

• Overwrite eip to point to target func in libc (system)

• Overwrite stack to setup args for target func(“/bin/sh”)

• Result: system(“/bin/sh”) is called!

sys’s arg

AAAA

new eip

AAAA

AAAA

AAAA

AAAA

libc

malloc()

printf()

system()

“/bin/sh”

(Somewhere in memory)

arg s1

arg s2

saved eip

saved ebp

local buf[]

…

local buf[] After foo returns 
(eip jump to system): 

CPU thinks stack frame is:

foo(…) before 
overflow

foo(…) after 
overflow

esp



Going Further: Return-Oriented Programming (ROP)

• Return-to-libc enables attacker to call existing functions (e.g., from libc)

• Going further: Why not “return” into the middle of functions, and only execute final instructions?
• Finer-grain control: can execute a few select instructions, rather than entire predefined functions

Dump of assembler code for function malloc:
0xb7ff2110 <+0>:push   %ebx
0xb7ff2111 <+1>:call   0xb7ff48e9 <__x86.get_pc_thunk.bx>
0xb7ff2116 <+6>:add    $0xceea,%ebx
0xb7ff211c <+12>: sub    $0x10,%esp
0xb7ff211f <+15>: pushl  0x18(%esp)
0xb7ff2123 <+19>: push   $0x8
0xb7ff2125 <+21>: call   0xb7fdb810 <__libc_memalign@plt>
0xb7ff212a <+26>: add    $0x18,%esp
0xb7ff212d <+29>: pop    %ebx
0xb7ff212e <+30>: ret    

… but we could jump 
here instead to execute 
two instructions, then 
regain control

return-to-libc
jumps here…

General ROP attack (Shacham 2008): 
• Search through common library code (e.g., libc) for functions that end in useful instructions. 
• Build shellcode as a series of “return addr’s” that point to useful instructions. 

(RET instruction pops next word on the stack into %eip)



Outline: Memory Safety: Attacks & Defenses

1. Review: Memory layout and function calls in a process

2. Attacks:

1. Stack-based buffer overflow attacks

2. Heap vulnerabilities (briefly)

3. Defenses:

1. Stack Canaries

2. Address-Space Layout Randomization (ASLR)

3. W ^ X and ROP

4. Fuzzing and Memory Safe Languages



Program Fuzzing: Find bugs before release
Idea: Developer runs their program on huge number of automatically-generated inputs, 
searches for crashes, and fixes bugs before releasing software

"A few weeks ago, my kids wanted to hack my Linux desktop, so they typed 
and clicked everywhere while I was standing behind them looking at them 
play," wrote a user identifying themselves as robo2bobo.

According to the bug report, the two kids pressed random keys on both the 
physical and on-screen keyboards, which eventually led to a crash of the Linux 
Mint screensaver, allowing the two access to the desktop.

"I thought it was a unique incident, but they managed to do it a second time," 
the user added.



Types of Fuzzing

Mutation-based (dumb): Take an initial set of examples (program inputs) and 
make random changes to them.

- Millions of inputs (can run fuzzing forever)

- Possibly lower quality, unlikely to find certain bugs / types of inputs

Generative (smart): Describe inputs to fit format/protocol, then generate inputs 
from that grammar with changes.

- Run with fewer inputs, which can be directed to certain bug types or code 
logic



Problems with Fuzzing

Mutation-based (dumb): How long to run? And we need a strong server.

Generative (smart): Run out of test cases. A lot more work.

General problems: 

• Need to identify when bug/crash occurs automatically.

• Don’t want to report same bug 1000s of times. 

• How do we prioritize bugs?



Fuzzing in Production

AFL: Popular open-source fuzzer released by Google

Google/Microsoft constantly fuzz products with dedicated servers/VMS.

Anecdote: Found 95 vulnerabilities in Chrome during 2011.



Memory-Safe Languages
Many of our problems can be solved by using “memory-safe” languages.

• The programming model for these languages does not allow for such bugs 
(e.g., no access to pointers / mem addr’s and built-in object bounds checking).

Not Memory-Safe Memory Safe
C Java

C++ Python

Assembly Javascript

Rust, Go, Haskell, …

Ideally, we’d avoid writing programs in unsafe languages, but lots of legacy code 
(and low-level stuff) are written in C/C++.



Pre-deployment, before the program runs: find or prevent bugs
- Fuzzing: proactively finding & fixing bugs by testing many program inputs
- Memory safe languages: automatically avoid exploitable memory bugs
- Done by the application developer

Program runtime: stopping exploits / violations of program’s memory
- Stack Canaries, ASLR, DEP/W+X, etc.
- Implemented by the compiler (stack canary) or operating system (ASLR, W+X)
- Attacks adapt & evolve (Stack reading, ROP attacks, etc.)

Post-exploitation (not covered today): limit possible damage from compromise
- Sandboxing and VMs
- Done by user/admin of the system or the app developer (e.g., web browsers)

Software Defenses



The End


