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Today’s Class

1. OS Security:
How do we ensure that users & programs only
access resources they're allowed to?

2. Software Security:
How can an attacker exploit software bugs to
bypass these security restrictions?



Outline for Lecture 2

1. OS Security: Controlling user & program access
1. Review of OS Structure
2. Abstract approaches to access control (5.2)
3. Concrete Example: The UNIX security model

2. Software Security: Memory Safety & Control Flow Hijacking
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Security/safety: Must protect processes from each other, protect hardware, ...

Questions, though:
e \What distinguishes the kernel from not-kernel?
e \What js a process?




How a CPU (x86) Works (extremely high level)

EAX

EBX

CPL

EBP

ESP

EIP

Registers

CPU

Repeat until HALT:

1. Fetch instruction inst pointed to by EIP

2. Execute logic of inst

3.

Increment EIP (or update it if inst=jmp)

Next instruction

In some cases “interrupts” can occur, which change EIP to
point at interrupt handler (pointed to by a special reQ).

0000...00
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code

Memory




How a CPU (x86) Works (extremely high level)

EAX

EBX

CPL

EBP

ESP

EIP

Registers

CPU

Memory Access:
= Reads move word of memory into register

= Writes move register to memory

Next instruction

Read/write memory
into registers

0000...00

0000...04
0000...08

<max>

code

Memory




Memory Management Unit (MMU)
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EIP

Registers

READ addr
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CPU

MMU

MMU inspects every memory access attempt each

program makes
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|Isolation in x86: It all comes down to CPL
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CPU
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|Isolation in x86: It all comes down to CPL

0000..00
0000..04
0000..08
EAX EBX| " CS EBP ESP EIP
RegiSterS Least privileged
Ring 1
Ring O
CPU Kernel
MMU Most privileged

Device drivers

Applications

« CPL Is “current privilege level”, two designated bits in CS register
e |[fCPL = 0:Then processor will execute any instruction

e |[fCPL = 3:Then processor will only execute subset of
instructions <max>

Kernel
memory

Memory

proc
memory

proc?2
memory




|Isolation in x86: It all comes down to CPL

EAX

EBX| " CS EBP ESP EIP

Registers

CPU
MMU

If cP1.=0, then CPU will allow...

Direct access to (almost) any addr
Changes to (almost) any register
Changes internal state of MMU
Including setting CPL=3!

Big |ldea: Kernel runs with
CPL=0, and all other

programs run with CPL=3.

It CPL=3, then CPU will not allow...

Direct access to memory (only via
MMU)

Changes to several registers
Changes to internal state of MMU
Setting CPL=0 (!)




Back to our diagram...
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_ The CPL!
Questions, though: _—

e \What distinguishes the kernel from not-kernel?
e \What js a process?




What /s a process?

0000..00
EAX EBX CS EBP B2 ETP
| 0000..04
riggleiere 0000..08| Kernel
process:
CPU statei...
usage=...
MMU
Memory

One Answer: A data structure the kernel manages, including:
e MMU configuration

e Register values

To run application code: Kernel loads these values, sets

CPL=3, and turns over CPU control “to the process” (i.e. set
EIP)

It kernel regains control, it can save these values to swap <max>

Process out



Handling Memory for a Process

0000..00
EAX EBX CS EBP ESP EIP OOOO 04
Registers 0000..08| Kernel
DroCess:
state=...
CPU usage-=..
MMU
\ ....... ¥34dr: 0x00gg
................................................ Memory
e Kernel creates a “virtual address space” for each process. proc
memory

e Same virtual addresses (e.g. starting near 0) can be used by

every process! They get translated to different physical
addresses.

e Kernel can also mark some virtual address ranges (called
segments) as “read only” or “do not execute” (EIP not

allowed to point there). <max>

e Violations are SEGFAULTS: MMU will take over in this case



Handling Memory for a Process (cont.)

EAX

EBX

CS

EBP

ESP

EIP

Registers

CPU

MMU

Read/Write/Execute to memory specific to pr
Read/Execute access to libc
Possibly other special “segments”

0000...00

0000...04
0000...08

Not mapped!
\

Kernel configures MMU to translate

sses for proc:

Not mapped!

No access to memory to Kernel or proc2 memory!

They're not even mapped; MMU will never allows access!

<max>

Kernel
memory

libc

proc
memory

proc?2
memory




System Calls: How to let processes do privileged ops

CPU
MMU

e A process (i.e. code running with CPL=3) often needs to do
privileged actions that the CPU won'’t allow directly

® ¢.g.access device, write output, spawn new process, ...
e System calls allow this.

e Set of instructions that carefully configure CPU registers,
execute small-specific operations w/ kernel permissions,
switch CPL back to 3 and return control to process

0000..00
EAX EBX| " CS EBP ESP EIP
0000..04
Registers

<max>

syscall
handler

Memory
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1. Review of OS Structure
2. Abstract approaches to access control (5.2)
3. Concrete Example: The UNIX security model
2. Software Security: Memory Safety & Control Flow Hijacking
e (Qverview of software exploits
e Memory layout and function calls in a process

e Stack-based buffer overflow attacks



So we have a secure kernel... What now?

1. Maybe all processes should not be “created equal™
- €.g. Should one process be able to kill another?
2. Enable different people to use same machine?
- €.9. Need to enable confidential storage of tiles, sharing network, ...

3. System calls allow for safe entry into kernel, but only make sense for
low-level stuff.

- We need a higher level to “do privileged stuft” like “change my
password”.

All of this will be supported by an “access control” system.




Fundamentals of Access Control: Policies

Guiding philosophy: Utter simplicity.

Step 1: Give a crisp definition of a policy to be enforced.
1. Define a sets of subjects, objects, and verbs.

2. A policy consists of a yes/no answer for every combination of
subject/object/verb.

Example

« Subjects: Grant, Blasé, Student

* QObjects: HW1, Exam

« Verbs: Create, Submit, Grade

« Policy: {Grant, Blasé -> Create, Submit, Grade -> HW1, Exam}
{Student -> Submit -> HW1, Exam}




The Access Control Matrix

columnjﬂ
Objects
Subjects : : J
S RW P
S, R
rowi > A’J ----- “(a)

e [Entry in matrix is list of allowed verbs

e [he matrix is not usually actually stored; It is an abstract idea.



Implementing Access Policies: ACLs

e ACL = “access control list”

e [ogically, ACL is just a column of matrix
e Usually stored with object

e (Can quickly answer guestion: “Who can access this object?”

row i —>}.

column jj
Objects
Subjects °1| 9 OJ
3] RW
> R
--------- I

“(a)

Examples:
1. VIP list at event

2. This class on Canvas




Implementing Access Policies: Capabilities

e “Capability” (of a subject) is a row of matrix
e Usually stored with subject
e (Can quickly answer guestion: “What can this subject access?”

columnj—\l,
Objects
O, O e | O, | e )

Subjects : 2 J Examples:

S RW B 1. Movie ticket

S, R ;' 2. Physical key to door lock

owi s [ Al
“...(b)



Enforcing Policy: Reference Monitors

Subject

request access

to object

access not
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............................ X>
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> Object,

Object,




Enforcing Policy: Reference Monitors
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1. Always invoked
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4. (Usually) Logs «
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What is "UNIX"? Why should we study it?

e |nitially an OS developed in the 1970s by AT&T Bell Labs.
e Ariff on *“Multics”. UNIX was meant to be simpler and leaner.
e Philosophy of small programs with simple communication mechanisms

e Licensed to vendors who developed their own versions. “BSD” = “Berkeley Software
Distribution” may be most famous of those.

e [ inux also later derived from UNIX. MacOS based on UNIX since 2000.

Why study UNIX?

/////////

1. Simple, even beautiful security design. Hgph =l
2. You will almost certainly use it.

3. Looking at something concrete is enlightening.

Ken Thompson and Dennis Ritchie, 1971



Subjects, Objects, and Verbs in UNIX (incomplete lists)

Subjects:
1. Users, identified by numbers called UIDs
2. Processes, identified by numbers called PIDs

Objects: Verbs (listed by object):
1. Files 1. For files and memory: Read, Write, Execute
2. Directories 2. For processes: Kill, debug
3. Memory segments 3. For users: Delete user, Change groups
4. Access control information (!)
5. Processes (!)
6. Users (!)



File Permissions: Users and Groups

e A “user”is a sort of avatar that may or may not correspond to a person.
e Each user is identified by a number called UID that is fixed and unique.

e FEach user may belong to 1 or more “groups”, each identified by number called GID.

All files are owned by one user and one group.

iInode:
mode=1010100...
uld=davidcash
gld=cs232
ctime=..

e (Changed with commands chown and chgrp.



File Permissions: UGO Model .

mode=1010100...

e Three bits for each of user, group, and other/all. uid=davideas
gl1d=cs232

* Indicate read/write/execute permission respectively. ctime=..

user group other

dirwx|rwXx|rwx
,T\ A A A

change change

if directory ‘o “<” o “t

special bits: |setuid|setgid| t-bit




File Permissions: UGO Model .

mode=1010100...

. L d= ' h
e Three bits for each of user, group, and other/all. uid=davidcas
gl1d=cs232

* [ndicate read/write/execute permission respectively. ctime=..

user group other

dirwx|rwXx|rwx
,T\ A A A

change change

if directory ‘o “<” o “t

special bits: |setuid|setgid| t-bit

To check access:
1.1f user is owner, then use owner perms.
2.1t user is not owner but in group, user group pPerms.

3. Otherwise use “other” perms. / ACL or

Capability?




The Root User

* “root” is the name for the administrator account

« UD=0

« Can open/modify any file, kill any process, etc

« Rarely used as a log-in; Root’s powers are typically accessed via sudo

« Why not? (Which design principle(s) does this follow?)



Process Ownership and Permissions

e FEvery process has an owner; That process runs with permissions of the owner.

Actually.... a process has three UIDs associated with it:
1. Real UID
2. Effective UID
3. Saved UID

e Why?” To allow for fine-grained control over privileges via setuid () syscall.
e |mplement least-privilege (P6) and isolated compartments (P5) in applications



Brief Recap of OS Security

 The OS Kernel ensures that multiple programs can securely run
together at the same time

* The CPU has a dedicated CS register that tracks the
privilege (CPL) of the currently running code

* The OS Kernel & MMU use virtual addressing to help
Isolate the memory of different processes

» To control what data (e.g., files) users can access and what
operations (e.g., programs and code) users can run:

* The OS implements an access control system, where an
administrator specifies policies (e.g., ACLs) about what
actions each subject can perform on different objects



2 MINUTE BREAK
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Software Attacks: One Common Setting

Example: Attacker has account “bob”
on a machine and wants to access
sensitive files, but;

passwd ¢ “bob” is not listed in ACLs of
process 'y :
sensitive files

e “bob” also lacks sudo/root

Insider escalating privilege L
permissions

Goal: Exploit a bug in a privileged process
(e.g., passwd) that lets “bob” run code with that
privileged process’s permissions



Software Attacks: Another Common Setting

\

httpd

process

Qutsider corrupting process

e Attacker wants to run code or access data on a server,
but is on a remote machine

 Goal: Exploit a bug in a program running on the server that cause the
program to run code that you send it.

e Attacker causes Gmail server to run code that returns
other users’ email

e Attacker sends a Slack msg to Bob that causes Bob’s Slack app
to run Attacker’s code



Software Vulnerabilities are Very Common

According to vulnerability researcher and author Dave Aitel.
* |In one hour of analysis of a binary, one can find potential vulnerabilities
* In one week of analysis of a binary, one can find at least one good vulnerability

* |In one month of analysis of a binary, one can find a vulnerability that no one else
will ever find.



Two Basic Principles of Most Attacks

e Adversaries get to inject their bytes into your machine

e “Data” and “Code” are interchangeable; They are fundamentally the same “thing”.

‘ J GET /index.html HTTP/1.1

GET
/index.htmlh6\&?7? :?2?2L?°23)
PRZ272vm??q ?%2~22?MPEK???

? ?|Cg7L??s3?

httpd
process
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Memory Layout of a Process (in Linux)
Virtual Memory

000...0

text: Machine executable code . text
.data: Global initialized static variables
.bss: Global uninitialized variables (“block starting symbol”) .data
heap: Dynamically allocated memory (via brk/sbrk/mmap syscall)
stack: Local variables and functional call info PSS
env: Environment variables (PATH etc)

heap

stack

cnv
fff..t




x86 Registers and Virtual Memory Layout

eax

ebx

Virtual Memory

000...0

S

cpl|lebp||lesp]|]|eip
Registers \
CPU

eip: Instruction pointer

esp: stack pointer (top of stack)

-

.Lext

.data

.bss

heap

ebp: base pointer to current “stack frame”

fff..t

env




The Stack and Calling a Function in C

Virtual Memory

What happens to memory when you call foo (a,b)?

000...0
maln elp
int foo(int a, int b) {
int d = 1; =
return at+b+d; O
}
esp
- malin frame [——ebp
maln local ”a“
Saved ebp ““¢‘ StaCk
saved e1p
. env
maln arg fff...t




The Stack and Calling a Function in C

What happens to memory when you call foo (a,b)?

- A “stack frame” is added (esp & ebp move up)

- Instruction pointer eip moves to code for foo

int foo (int a,
int d = 1;
return a+b+d;

}

int b)

local d

saved ebp

saved e1ip

arg b

arg a

prev local

saved ebp

saved e1p

prev arg

Virtual Memory

000...0

maln elp
foo
new frame
esp
prev frame |[——ebp
stack
env

fff..t




Returning from a function

What happens after code of foo (a,b) is finished?
- Pop the function’s stack frame (move esp to ebp)

- Pop (moves) saved ebp to ebp register

- Pop (moves) saved eip to eip register

- Caller (main) pops foo’s arg from the stack

int foo(int a,
int d = 1;
return a+b+d;

}

int b)

{

local d

saved ebp

saved e1p

arg b

arg a

prev local

saved ebp

saved e1p

prev arg

Virtual Memory

000...0

fff..t

maln
—el
foo P
esp
new frame ebp

prev frame

stack

env
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Classic Attack: Overflowing a buffer on the stack

Function bad copies a string into a 64 character buffer.

— strcpy continues copying until it hits NULL character!
— It s points to longer string, this overwrites rest of stack frame.

— Most importantly saved eip is changed, altering control flow.

vold bad(char *s)
char bufl[od];
strcpy (buf, s);

}

{




Classic Attack: Overflowing a buffer on the stack

Function bad copies a string into a 64 character buffer.
— strcpy continues copying until it hits NULL character! char buf[64];

— If s points to longer string, this overwrites rest of stack frame. strcpy (but, s);
— Most importantly saved eip is changed, altering control flow.

Frame before strcpy Frame after strcpy

local buf

<buf cont.>

AAAA

<buf cont.>

AAAA

AAAA

<buf cont.>

AAAA

saved ebp

AAAA

saved e1p

AAAA

arg s

AAAA

AAAA

vold bad(char *s) {

}

s=“AAAA.AAAA” (70 or more characters)

saved eip should be herel!
AAAA=0x41414141 will be used

as return address

What will happen? ~ SEGFAULT!



How to exploit a stack buffer overflow

Suppose attacker can cause bad to run with an s it chooses.

] *
- Step 1: Set correct bytes to point back to input(!) Voiia?agé?ﬁzz ] s) ot

strcpy (buf, s);
}

s=“AAAAA..AAAA\x24\xfo\xff\xbfAAA..”

Frame before strcpy  Frame after strcpy

local buf AAAA — (Oxbffffo24
<buf cont.> AAAA
<buf cont.> AAAA
AAAA
<buf cont.> AAAA
saved ebp AADA Well-chosen
saved eip P characters usedl
as an address for eip!
arg s AAAA

What will happen? lllegal instruction!



How to exploit a stack buffer overflow

Suppose attacker can cause bad to run with an s it chooses.

. . j h *
- Step 1: Set correct bytes to point back to input(!) Voiga?agéﬁ [22] .S) {

- Step 2: Make input executable machine code(!) } strcpy (but, s);

s=“<machine code>\x24\xfo\xff\xbfAAA..”

Frame before strcpy  Frame after strcpy

local buf <code> |e—— (Oxpbffff624
<buf cont.> <code>
<buf cont.> <code>
<code>
<buf cont.> <code>
saved ebp <code>
saved eip Oxbfff£624 saved eip
arg s AAAA

What will happen? Success!



What to put in for <code>?

The possibilities are endless!
— Spawn a shell
— Spawn a new service listening to network

— Change files
— ... s=“<machine code>\x24\xfo\xff\xbfAAA.."”
But wait... what about NULL bytes? Frame after strcpy
Solution: Find machine instructions with no NULLS! <code>
— Can even find machine code with all alpha bytes. <code> strcpy
00 «— stopped here,
saving victim :(
<unchanged>
<unchanged>

saved ebp

saved eip

AAAA




Example Shellcode

char shellcode[] =

Mxeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
MIx89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xff\xff\xff/bin/sh";

Basically equivalent to:

#include <stdio.h>
void main () {
char *name[2];
name [0] = “/bin/sh";
name|[1l] = NULL;
execve (name[0], name, NULL);



Finally, where did that magic address come from?

Assignment: GDB is your friend ©

TwoO Issues:

— Need address to jump to beginning of shellcode
— Need to know where to overwrite saved EIP

<code>

<code>
<code>

<code>

<code>

Oxbffffo24

AAAA

volid bad(char *s) {
char buf[ocd];
strcpy (buf, s);

J

s="<code>\x24\xfo\xff\xbfAAA..”

<code> Oxbffffo24

saved eip



Technique #1: NOP Sleds

— Instruction 0x90 is “xchg eax, eax’, i.e.does notthing. Thisis a “No Op” or “NOP”.
— Just add a ton of NOPs (as many as you can, even many MB) and hope pointer lands there

0x90909090

0x90909090 |[e——0Oxbffff624

0x90909090

<code>

<code>

<code>
<code>

<code>

<code>

Oxbffff624 saved eip

AAAA




Technique #2: Placing malicious EIP

— Simple: Just copy it many times

0x90909090
0x90909090

+—Oxbffffo24

0x90909090

<code>

<code>

<code>
<code>

<code>

<code>
Oxbffffo24

Oxbfff£624 saved eip

Oxbffffo24




Brief Recap of Software Attacks

* Bugs in code can allow attackers to bypass OS security and
access control policies

« The CPU stores critical “control flow” information on the stack

e Saved EIP & Saved EBP: controls what the CPU does
after a function returns

* Buffer overflow attack: vulnerable program doesn’t check if
a (stack) buffer has enough space to hold copied data

* Attacker can provide input of {malicious code} +
{new return address, that points to the malicious code}

* CPU will run the attacker’s code, instead of the program’s
actual code



The End



