
Scheduler Activation
Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry

M. Levy

SOSP.1991

Background of the paper / Why

Why

• Why do we need threads?

• Why do we still need processes after we have threads?

Why

• Why do we need threads?
• Performance from parallel execution

• Share memory

• Cost with every process

• Why do we still need processes after we have threads?

Process vs. Thread (roles, resources)

• Process (resource unit)
• Page table

• Open file table

• Thread (execution unit)
• Register

Process vs. Thread (roles, resources)

• Process (resource unit)
• Page table

• Open file table

• Thread (execution unit)
• Register

Background: process implementation

• Scheduling in the era of processes

• I/O blocking in the era of processes

Background: thread implementation before
this paper
• 1:1 kernel threading

• One kernel thread maps to one user level program thread/task

• 1:n user thread library
• One kernel thread maps to multiple user level program threads/tasks

1:1 kernel thread implementation

• How to implement

• How to create a thread

• How to do context switch

• How to do synchronization?

• What happened at an I/O blocking?

1:n user level thread implementation

• How to implement

• How to create a thread

• How to do context switch

• How to do synchronization

• What happened at an I/O blocking

• What happened at an I/O unblocking

Kernel threading vs. User threading

• User threading
• Disadvantage

• Advantage

• Kernel threading
• Advantage

• Disad …

Kernel threading vs. User threading

• User threading
• Disadvantage

• Poor integration with system events (I/O, …)
• I/O blocking event

• Advantage
• Fast in thread creation, synchronization

• Flexible, customized

• Kernel threading
• Advantage

• Great integration with system events

• Disad …

A simple m:n implementation

• M kernel threads for n user level threads

• What happens at an I/O blocking

• What happens at an I/O unblocking?

Scheduler activation

• M:N with communication
• Up Calls and system calls

• Kernel offers mechanisms

• User-level offers policies

Example: when an I/O blocking happens

A CBprocessors

1 2

34 5

Kernel
thread

User-level runtime

Blocked(1)

When the I/O is unblocked

A CBprocessors

12

3

4

5

Kernel
thread

User-level runtime

Blocked(1) preempt(2,)
Unblock(1,)

Impact of SA

• Kernel thread has advanced
• Creation faster

• Synchronization faster

