Scheduler Activation

Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry
M. Levy

SOSP.1991

=)

Background of the paper / Why

Why

* Why do we need threads?

* Why do we still need processes after we have threads?

Why

+ Why do weqepd\thre@

W parallel execution

h every process

vy do we still need processes after we have threads?

Process vs. Thread (roles, resources)

* Process (resource unit) * Thread (execution unit)
* Page table * Register
* Open file table
S
—_ \%ﬁ@ﬁ
— =
Ao
(("g /M ‘\9@{ | —_— g
Rloz ¢
é [

Process vs. Thread (roles, resources)

* Process (resource unit) * Thread (execution unit)
* Page table © . Register

* Open file table

Background: process implementation

e Scheduling in the era of processes

* |/O blocking in the era of processes

Background: thread implementation before
this

e 1:1 reading
* One kernel thread maps to o

sgr level program thread/task

e 1:n user thread library A

——

* One kernel apsto multiple user lexel progFam threads/

: YA 1] b2 4
) | \ ? -\
[1 b/ ¢ \%\\é | ﬂ'/ M Tﬂft |

el (0% |

1:1 kernel thread implementation

* How to implement

* How to create a thread

* How to do context switch

* How to do synchronization?

* What happened at an /0 blocking?

1:n user level thread implementation

* How to implement

* How to create a thread

* How to do context switch

 How to do synchronization

* What happened at an |/O blocking

* What happened at an /0O unblocking

Kernel threading vs. User threading

e User threading
* Disadvantage
* Advantage

* Kernel threading

* Advantage
* Disad ...

Kernel threading vs. User threading

e User threading

* Disadvantage

* Poor integration with system events (l1/0, ...)
* |/O blocking event

* Advantage
e Fast in thread creation, synchronization
* Flexible, customized

* Kernel threading

* Advantage
e Great integration with system events

e Disad ...

A simple m:n implementation
/

* M kernel threads for n user level threads
* What happens at an |/O blocking
* What happens at an |/O unblocking?

Scheduler activation

* M:N with communication
* Up Calls and system calls
» Kernel offers mechanisms
* User-level offers policies

,->' Add more processors (additional # of processors needed)
AllocatéTmore processors to this address space and start
them running scheduler activations.

> This processor is idle ()

Preempt this processor if another address space needs it.

Table 3: Communication from the Address Space to the Kernel

.

Add this processor (processor #)
Ezecute a runnable user-level thread.

Processor has been preempted (preempted activation # and its machine state)
Return to the ready list the user-level thread that was executing in the
context of the preempted scheduler activation.

Scheduler activation has blocked (blocked activation #)
The blocked scheduler activation is no longer using its processor.

Scheduler activation has unblocked (unblocked activation # and its machine state)
Return to the ready list the user-level thread that was executing in the
context of the blocked scheduler activation.

Table 2: Scheduler Activation Upcall Points

Example: when an I/O blocking happens

When the /O is unblocked

User-level runtime —B

s A\ lL)
Blocked(1) A preempt(2,) C l JA

Unblock(1,)

1 -

Kernel
thread

Qe T]

)

>

Impact of SA

 Kernel thread has advanced
* Creation faster
* Synchronization faster

