
Networked File System
NFS

How to share files across machines?

/

/a /b

/a/1
/a/2

/b/1
/b/2

/y/w/1
/y/w/2

/

/x /y /z
/y/w

/y/w/3

Goals of NFS

• Small collaboration environment
• Transparent
• Accessing remote files is just like accessing local files

• Performance
• Easy failure recovery

NFS procedure from a user’s perspective

• mount <M2>:/y /b
• fd = open (“/b/w/1”, …);
• read (fd, …, …)
• write (fd, …, …)
• close (fd);

/

/
a

/
b

/a/1/a/2 /b/1/b/2

/y/w/1
/y/w/2

/

/x /y /z
/y/w

/y/w/3

Open “/b/1” on local machine

• Read i-node of /
• Read data blocks of /
• Read i-node of b
• Read data blocks of b
• Get i-node number of /b/1

/

/
a

/
b

/a/1/a/2 /b/1/b/2

Open “/b/1” on local machine

• Read i-node of “/”
• Read data block of “/” (locate [b, i-node b])
• Read i-node of “/b”
• Read data block of “/b” (locate [1, i-node of 1])
• Read i-node of “/b/1”; update open file table

/

/
a

/
b

/a/1/a/2 /b/1/b/2

How/Where does it change to get remote files?

Open “/y/w/1” on a remote machine

• Mount

/

/
a

/
b

/a/1/a/2 /b/1/b/2

/y/w/1
/y/w/2

/

/x /y /z
/y/w

/y/w/3

<path> Device

<path> Remote machine address,
file handle of remote mount point

Mount table

Open “/y/w/1” on a remote machine

• Mount

/

/
a

/
b

/a/1/a/2 /b/1/b/2

/y/w/1
/y/w/2

/

/x /y /z
/y/w

/y/w/3

<path> Device

<path> Remote machine address,
file handle of remote mount point

Mount table

How to identify a
directory/file on a
remote machine??

Open “/y/w/1” on a remote machine

• Mount m2:/y /b

/

/
a

/
b

/a/1/a/2 /b/1/b/2

/y/w/1
/y/w/2

/

/x /y /z
/y/w

/y/w/3

<path> Device

<path> Remote machine address,
file handle of remote mount point

Mount table

Open “/y/w/1” on a remote machine

• Mount m2:/y /b
• open (“/b/w/1”, …)
• Step 1: look up the mount table
• Step 2: send ??? to machine M2

/

/
a

/
b

/a/1/a/2 /b/1/b/2

/y/w/1
/y/w/2

/

/x /y /z
/y/w

/y/w/3

<path> Device

/b M2, file handle of /y

Mount table

Open “/y/w/1” on a remote machine

• Mount m2:/y /b
• open (“/b/w/1”, …)
• Step 1: look up the mount table
• Step 2: send ??? to machine M2

/

/
a

/
b

/a/1/a/2 /b/1/b/2

/y/w/1
/y/w/2

/

/x /y /z
/y/w

/y/w/3

<path> Device

/b M2, file handle of /y

Mount table

Ask about one file at a time!

NFS_look up (fh/y, “w”);

Open “/y/w/1” on a remote machine

• Mount m2:/y /b
• open (“/b/w/1”, …)
• Step 1: look up the mount table
• Step 2: send ??? to machine M2

/

/
a

/
b

/a/1/a/2 /b/1/b/2

/y/w/1
/y/w/2

/

/x /y /z
/y/w

/y/w/3

<path> Device

/b M2, file handle of /y

Mount table

Ask about one file at a time!

NFS_look up (fh/y, “w”);

fh /y/w

Open “/y/w/1” on a remote machine

• Mount m2:/y /b
• open (“/b/w/1”, …)
• Step 1: look up the mount table
• Step 2: send ??? to machine M2

/

/
a

/
b

/a/1/a/2 /b/1/b/2

/y/w/1
/y/w/2

/

/x /y /z
/y/w

/y/w/3

<path> Device

/b M2, file handle of /y

Mount table

Ask about one file at a time!

NFS_look up (fh/y, “w”);

fh /y/w

NFS_look up (fh/y/w, “1”);

fh /y/w/1

Open “/y/w/1” on a remote machine

• Mount m2:/y /b
• fd = open (“/b/w/1”, …)
• Step 1: look up the mount table
• Step 2: send ??? to machine M2
• Step 3: store <m2>:fh/y/w/1 to open file table on M1

/

/
a

/
b

/a/1/a/2 /b/1/b/2

/y/w/1
/y/w/2

/

/x /y /z
/y/w

/y/w/3

<path> Device

/b M2, file handle of /y

Mount table

NFS_look up (fh/y, “w”);

fh /y/w

NFS_look up (fh/y/w, “1”);

fh /y/w/1

Is it stored on M2?

NFS server is stateless

• Not keeping information about files opened by another machine
è Easy for failure recovery

read (fd, void* buf, count)
i-node offset

<M2> fh/y/w/1 0

Open file table

/

/
a

/
b

/a/1/a/2 /b/1/b/2

/y/w/1
/y/w/2

/

/x /y /z
/y/w

/y/w/3

NFS_read(fh/y/w/1, offset, count);

data

Why?

NFS server is stateless

• Not keeping information about files opened by another machine
• Easy for failure recovery

• Read request
• has to include offset information
• Read request is idempotent

Idempotent operation O:
doing O once is equivalent with doing O
many times

write (fd, void* buf, count)
i-node offset

<M2> fh/y/w/1 0

Open file table

/

/
a

/
b

/a/1/a/2 /b/1/b/2

/y/w/1
/y/w/2

/

/x /y /z
/y/w

/y/w/3

NFS_write(fh/y, offset, count, data);

status

NFS server is stateless

• Not keeping information about files opened by another machine
• Easy for failure recovery

• Read request
• has to include offset information
• Read request is idempotent

• Write request
• Has to include offset information
• Write request is idempotent

Idempotent operation O:
doing O once is equivalent with doing O
many times

Performance

• What is the performance cost?

• Using caching to improve performance

Poll questions in today’s lecture
1. What is the file handle in NFS? (Single Choice)
Answer 1: symbolic path and file name
Answer 2: i-node
Answer 3: i-node and some other information

2. what is returned by the open system call when I am
opening a remote file through NFS (Single Choice)
Answer 1: file descriptor that points to the process'
open file table
Answer 2: file handle of the remote file
Answer 3: i-node content of the remote file

3. does the remote machine store the file handle of /y/w/1 into
its kernel open file table? (Single Choice)
Answer 1: yes
Answer 2: no

Concurrent updates

• What if multiple machines are updating a file?

Client 1

Client 2

server

Consistent update

Concurrent updates

• What if multiple machines are updating a file?

Client 1

Client 2

server

inconsistent update

Something about networked systems

• Using networked machines to improve capacity

• Paying attention to failure tolerance!

• Paying attention to concurrency/consistency control!

• RPC (remote procedure call)

