
Hashing & Hash Tables

CAPP 30122

What is a Hash Table?

- A data structure that maps an identifying value (key) with
some associated data (which can be the key itself and/or
another value).

- Save items in a key-indexed table by using a special function
called a hash function on the key.

- Always try to choose a prime number as table size (it helps
with hashing).

- One implementation of a hash table is the python dictionary
(dict) type.

class HashTable:

 def __init__(self, initSize = 7):

 self._size = initSize

 # _cells is a list that will hold the values

 self._cells = ... # Think about how you would create this

 def _hash(self, key):

 pass # Next slide

 def insert(self, key, value):

 cell_index = self._hash(key)

 self._cells[cell_index] = (key,value) # Is this correct…?

Hash Function
• A function that computes a table index (integer) from a key

- Each table position equally likely for each key

- Converts k into an integer and then mod (modulus) it by the table size:

 h(k) = k_int mod M

- If our keys were strings here’s one example of a hash function:

 def _hash(self, key):

 hashCode = 0

 for c in key:

 hashCode = hashCode + ord(c)

 return hashCode % self._size

Example

table = HashTable() # _size = 7

table.insert(“a”, 45) # _hash = 97 % 7 = 6

table.insert(“ac”, 23) # _hash = (97+99)%7 = 0

table.insert(“cat”, 12) # _hash = (99+97+116)%7 = 4

Index 0 1 2 3 4 5 6

Cells (“ac”,
23) None None None (“cat”

,12) None (“a”,4
5)

def _hash(self, key):

 hashCode = 0

 for c in key:

 hashCode = hashCode + ord(c)

 return hashCode % self._size

Problem: Collisions!

• Collision - when a hash function maps two or more elements to the
same index

• Our hash function is not a great hash function because many collisions
could happen! (In what instance will this happen?)

• Even with a well-written hash function, collisions will happen. Every
hash table implementation needs a collision resolution scheme:

- An algorithm for handling collisions

Standard String Hash
Function

• A more effective approach is to use Horner’s method to compute
a polynomial whose coefficients are the integer values of the
characters in a string.

- “ai” are the integer values for the characters in a string

- “x” is a prime multiplier integer value

Standard String Hash
Function

• Given the string "abc", the hash value would be computed as:

 multiplier = 37 # should be relatively prime

hash_value = 0

hash_value = (hash_value * multiplier + ord("a")) % self._size

hash_value = (hash_value * multiplier + ord("b")) % self._size

hash_value = (hash_value * multiplier + ord("c")) % self._size

• You should be able to convert the above code (using a for loop)
into a simple function.

Collision Resolution
Separate chaining and Open addressing are the most common schemes
used when keys resolve to the same hash code:

• Separate chaining:

- Put keys that collide in a list

- Need to search lists during lookup

• Open addressing (e.g., linear probing, quadratic probing, double hashing):

- When a new key collides, find an empty slot in the table

- Complex collision patterns

• Question for you: When would it be better to use over the other one?

Linear Probing
• Probing: Resolving a collision by moving to another index.

- Linear Probing - move to the next available cell

- If you cannot find an available cell then you’ll need to rehash the table (make the table larger and rehash all items).

- You linear probe for both lookup and insertion.

table = HashTable()

table.insert(“Sally”, 45) # h(“Sally”) = 5

table.insert(“Bob”, 23) # h(“Bob”) = 0

table.insert(“Joe”, 12) # h(“Joe”) = 0, collides with cell[0], next available cell = cell[1]

table.insert(“Pam”, 9) # h(“Pam”) = 0, collides with cell[0] & cell[1], next available cell = cell[2]

table.insert(“Tim”, 12) #h(“Tim”) = 6

Index 0 1 2 3 4 5 6

Cells (“Bob”,
23)

(“Joe”
,12)

(“Pam”,
9) None None (“Sally”

,45)
(“Tim”,

12)

Wrap Around
• When probing, be sure to warp around to the beginning of the table if you reach the end.

table = HashTable()

table.insert(“Ally”, “a") # h(“Ally”) = 5

table.insert(“Carol”, “b”) # h(“Carol”) = 6

table.insert(“Roy”, “c”) # h(“Roy”) = 5, collides with cell[5] & cell[6], so wrap around to the
beginning, where cell[0] is available

table.insert(“Carl”, “d”) # h(“Carl”) = 6, collides with cell[6], so wrap around to beginning,
collides with cell[0], next available cell = cell[1]

Index 0 1 2 3 4 5 6

 Value (“Roy”,
“c”)

(“Carl”,
“d” None None None (“Ally”,

“a”
(“Carol”,

b”)

Rehashing

• Rehash - Growing to a larger table when the table is too full.

- Cannot copy the old table values to a new one. (Why not?)

• Load factor (ratio): (# of items) / (hash table length)

- Many hash tables rehash when load factor ~.75

