
11. How the Web Works

Part 1

Blase Ur and David Cash

February 5th, 2021

CMSC 23200 / 33250

Your interface to the web

• Your web browser contacts a web server

A 10,000 Foot View of Technologies

• Where things run:

HTML / CSS

JavaScript
(Angular/React)

Browser Extensions

Python (Django) / CGI (Perl) /
PHP / Node.js / Ruby on Rails

Databases (MySQL)

HTTP(S)

The Anatomy of a Webpage

• view-source:https://www.cs.uchicago.edu/

• HTML (hypertext markup language)

– Formatting of a page

– All sorts of formatting: <div><p>Hi</p></div>

– Links: Click here

– Pictures:

– Forms

• HTML 5 introduced many media elements

The Anatomy of a Webpage

The Anatomy of a Webpage

• CSS (cascading style sheets)
• <link href="/css/main.css?updated=20181020002547"

rel="stylesheet" media="all">

• view-

source:https://www.cs.uchicago.edu/css/main.css?updated=201810

20002547

• id (intended to be unique)

• class (not intended to be unique)

The Anatomy of a Webpage

• DOM (document object model)

Typing Something into a Browser:

• DNS (domain name service)

– www.cs.uchicago.edu resolves to IP address

128.135.164.125

• URL (uniform resource locator)

• https://www.cs.uchicago.edu/test.html

– Protocol: https

– Hostname: www.cs.uchicago.edu

– Filename: test.html

– Default file name if none listed: index.html

(and similar)

http://www.cs.uchicago.edu/

HTTP Request

• HTTP = Hypertext Transfer Protocol

• Start line: method, target, protocol version

– GET /index.html HTTP/1.1

– Method: GET, PUT, POST, HEAD, OPTIONS

• HTTP Headers

– Host, User-agent, Referer, many others
– https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

• Body (not needed for GET, etc.)

• In Firefox: F12, “Network” to see HTTP
requests

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

HTTP Request

From https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages

• GET /index.html HTTP/1.1

HTTP Response

• Status

– 200 (OK)

– 404 (not found)

– 302 (redirect)

• HTTP Headers

• Body

HTTP

From https://developer.mozilla.org/en-US/docs/Web/HTTP/Messages

HTTPS

• Simply an HTTP request sent over TLS!

– That is, the request and response are

encrypted

Keeping State Using Cookies

• Cookies enable persistent state

• Set-Cookie HTTP header

• Cookie HTTP header

– Cookie: name=value; name2=value2;

name3=value3

• Cookies are automatically sent with all

requests your browser makes

• Cookies are bound to an origin (only sent

to the origin that set them)

Keeping State Using Cookies

• Session cookies (until you close your

browser) vs. persistent cookies (until the

expiration date)

• Secure cookies = only sent over HTTPS,

not HTTP

• HTTPonly cookies are not accessible to

JavaScript, etc.

• View cookies: “Application” tab in Chrome

developer tools, “Storage” in Firefox

Authorization Tokens = Cookies

• You log into a website, and it presents you

an authorization token (typically a hash of

some secret)

• Subsequent HTTP requests automatically

embed this authorization token

Other Ways to Keep State

• Local storage

• Flash cookies

• (Many more)

HTTPS

• An extension of HTTP over TLS (i.e., the

request/response itself is encrypted)

• Which CAs (certificate authorities) does

your browser trust?

– Firefox: Options → Privacy & Security → (all

the way at the bottom) View Certificates

