
David Cash & Blase Ur

Cryptography Part 1
CMSC 23200/33250, Winter 2021, Lecture 7

University of Chicago

Brief Pause: Computer Security Ethics

- Never explore vulnerabilities in someone’s else’s system without
their permission!

- … even if they are easy/obvious
- … even if you mean no harm.
- At best it is rude; Usually it is harmful.
- It is almost always illegal. Trouble with the University as well.

Trying out a vulnerability on your VM is okay.

Brief Pause: Computer Security Ethics

- If you do find a novel vulnerability, do not make it public!

- … even if it is easy/obvious
- … even if you mean no harm.
- It is almost always illegal.
- Legal gray area: Selling it… please don’t.

“Responsible disclosure” is the term of art for

- Privately notifying the vendor and possibly victims,
- Filing for a CVE,
- Waiting until it is patched to discuss your finding.

- Sometimes conflicts arise (e.g. vendor won’t fix).

What is Cryptography?

Cryptography involves algorithms with security goals.

Cryptography involves using math to stop adversaries.

Common Security Goal: Secure Channel

Client Server

Secure channel

m1

m′ 2
m′ 1

m2

Confidentiality: Adversary does not learn anything about messages m1, m2

Authenticity: andm′ 1 = m1 m′ 2 = m2

pw=“fourwordsuppercase”

WPA2 (Wi-Fi Protected Access 2): Secure WiFi

pw=“fourwordsuppercase”

Secure channel

Physical medium (air)

GSM Cell Phone Encryption (A5/1, A5/3)

Secure channel

Physical medium (air)

User Key

Alice Doe 340934c3

Betty Lee b9842544

Cheryl Zang 93d94520

Pat Dobbs 2ea0f48d

… …

K = b9842544

K

Disk Encryption

Hard DriveK = b9842544

Crypto in your browser: TLS (Transport Layer Security)

Internet

Secure channel

No pre-shared key, yet “guarantees” secret & authenticated
communication with amazon.com.

Crypto in CS23200/33250

- A brief overview of major concepts and tools
- Cover (some of) big “gotchas” in crypto deployments
- Cover background for networking and authentication later

Not going to cover math, proofs, or many details.
Consider taking CS284 (Cryptography)!

Four settings for cryptography

Confidentiality Authenticity/Integrity

Yes
(“Symmetric”)

Symmetric Encryption
(aka Secret-key

Encryption)

Message
Authentication Code

(MAC)

No
(“Asymmetric”) Public-Key Encryption Digital Signatures

Security
Goal

Pre-shared
key?

Rest of this lecture

- Symmetric Encryption Basics
- Stream Ciphers
- Block Ciphers

Rest of this lecture

- Symmetric Encryption Basics
- Stream Ciphers
- Block Ciphers

Encrypt DecryptC

Ciphers (a.k.a. Symmetric Encryption)

K
m m/ ⊥

K

A cipher is a pair of algorithms Encrypt, Decrypt:

Require that decryption recovers the same message.

Historical Cipher: ROT13 (“Caesar cipher”)

Plaintext: DEFGH
Key (shift): 3
Ciphertext: FGHKL

Encrypt(K,m): shift each letter of plaintext forward by K
positions in alphabet (wrap from Z to A).

Plaintext: ATTACKATDAWN
Key (shift): 13
Ciphertext: NGGNPXNGQNJA

Historical Cipher: Substitution Cipher

Encrypt(K,m): Parse key K as a permutation π on {A,… Z}.
Apply π to each character of m.

P: ATTACKATDAWN
K: π
C: ZKKZAMZKYZGT

x π(x)
A Z
B U
C A
D Y
E R
F E
G X
H B
I D
J C
K M
L Q
M H
N T
O I
P S
Q V
R N
S P
T K
U O
V F
W G
X W
Y L
Z J

How many keys?
26! ≈ 288

9 million years to try all keys at rate of
1 trillion/sec

Cryptanalysis of Substitution Cipher

Quick recall: Bitwise-XOR operation

We will use bit-wise XOR:
0101
1100⨁

1001

Some Properties:
• X⨁Y = Y⨁X
• X⨁X = 000…0
• X⨁Y⨁X = Y

Cipher Example: One-Time Pad

Key K: Bitstring of length L

Plaintext M: Bitstring of length L

Encrypt(K,M): Output K⨁M Example:
0101
1100⨁

1001Decrypt(K,C): Output K⨁C

Correctly decrypts because
K⨁C = K⨁(K⨁M) = (K⨁K)⨁M = M

Q: Is the one-time pad secure?
Bigger Q: What does “secure” even mean?

Evaluating Security of Crypto Algorithms

Kerckhoff’s Principle: Assume adversary knows your
algorithms and implementation. The only thing it
doesn’t know is the key.

1. Quantify adversary goals
Learn something about plaintext? Spoof a message?

2. Quantify adversary capabilities
View ciphertexts? Probe system with chosen inputs?

3. Quantify computational resources available to adversary
Compute cycles? Memory?

Breaking Encryption - A Basic Game

C1, …, CqK
m1, …, mq m/ ⊥

K

Ciphertext-only attack: The adversary sees ciphertexts and
attempts to recover some useful information about plaintexts.

More attack settings later.

Recovering Partial Information; Partial Knowledge

- Recovering entire messages is useful
- But recovering partial information is also be useful

- Attacker may know large parts of plaintext already (e.g.
formatting strings or application content). The attacker tries to
obtain something it doesn’t already know.
 M = http://site.com?password=▮▮▮▮▮▮▮▮

A lot of information is
missing here.

But can we say who this is?

“Attacks” versus “Security”

An attack is successful as long as it recovers some info
about plaintext that is useful to adversary.

Encryption should hide all possible partial information about
plaintexts, since what is useful is situation-dependent.

Attacks can succeed without recovering the key

C1, …, CqK
m1, …, mq m/ ⊥

K

Full break: Adversary recovers K, decrypts all ciphertexts.

However: Clever attacker may compromise encryption
without recovering the key.

Security of One-Time Pad

Claim: If adversary sees only one ciphertext under a
random key, then any plaintext is equally likely, so it
cannot recover any partial information besides plaintext
length.

Ciphertext observed:
Possible plaintext:
⇒ Possible key:

10111
00101
10010

1. Adversary goal: Learn partial information from plaintext
2. Adversary capability: Observe a single ciphertext
3. Adversary compute resources: Unlimited time/memory (!)

Issues with One-Time Pad

1. Reusing a pad is insecure
2. One-Time Pad is malleable
3. One-Time Pad has a long key

Issue #1: Reusing a One-Time Pad is Insecure

HELLOALICE

Pad

C1

⨁

=

PWDHAMSTER

Pad

C2

⨁

=

HELLOALICE Pad

⨁

PWDHAMSTER

=

⨁

=
Pad

Issue #1: Reusing a One-Time Pad is Insecure

S3CR3T1234

Pad

C1

⨁

=

3L33THXRRR

Pad

C2

⨁

=

C1 ⨁ C2

= S3CR3T1234 3L33THXRRR⨁

Has led to real attacks:
- Project Venona (1940s) attack by US on Soviet encryption
- MS Windows NT protocol PPTP
- WEP (old WiFi encryption protocol)
- Fortiguard routers! [link]

https://seclists.org/bugtraq/2019/Nov/38

Issue #2: One-Time Pad is Malleable

PAYALICE$1

Pad

C

⨁

=

=
C’

⨁

000ALICE00

000DAVID00

⨁

Decrypt(Pad, C’) = PAYDAVID$1

Issue #3: One-Time Pad Needs a Long Key

Can prove: Any cipher as secure as the OTP must have:
Key-length ≥ Plaintext-length

In practice:
- Use stream cipher: Encrypt(K,m) = G(K)⊕m
- Add authentication tag
- Use nonces to encrypt multiple messages

Outline

- Symmetric Encryption Basics
- Stream Ciphers
- Block Ciphers

Tool to address key-length of OTP: Stream Ciphers

Stream cipher syntax: Algorithm G that takes one input
and produces an very long bit-string as output.

1100..11

11111010001000111010100101000101100100111100…

G

⨁ DONUTSDONUTSDONUTSDONUTSDONUTSDONUTSDONUTSDON

Use G(seed) in place of pad.
Still malleable and still one-time, but key is shorter.

Typically 16 or 32 bytes.Usually very, very large
(petabytes if needed)

Key/Seed k:

G(k):

Stream Cipher Security Goal (Sketch)

Security goal: When k is random and unknown, G(k)
should “look” random.

… even to an adversary spending a lot of computation.

Much stronger requirement that “passes statistical tests”.

Brute force attack: Given y=G(k), try all possible k and
see if you get the string y.

Clarified goal: When k is random and unknown, G(k)
should “look” random to anyone with less computational
power needed for a brute force attack.

(keylength = 256 is considered strong now)

Aside: Fundamental Physical Property of the Universe*

There exist (1-to-1) functions (say on bitstrings) that are:
 1) Very fast to evaluate
 2) Computationally infeasible to reverse

The disparity can be almost arbitrarily large!

Evaluating y = f(x) may only take a few cycles….

… and finding x from y within the lifetime of the universe
may not be possible, even with a computer made up of
every particle in the universe.

*conjectured, but unproven property

Computational Strength

Steps Who can do that many?
256 Strong computer with GPUs
280 All computers on Bitcoin network in 4.5 hours
2128 Very large quantum computer? (Ask Fred+Bill)*
2192 Nobody?
2256 Nobody?

*Not directly comparable but this is an estimate of equivalent power.
Quantum computers are most effective against public-key crypto, but they
also speed up attacks on symmeric-key crypto. (More next week.)

Practical Stream Ciphers

RC4 (1987): “Ron’s Cipher #4”. Mostly retired by 2016.

ChaCha20 (2007): Successfully deployed replacement.
Supports nonces.

Pad reuse can still happen with stream ciphers

m1

⨁ G(k)

k

k

ciphertext

…

m2

⨁

ciphertext

G(k)

Addressing pad reuse: Stream cipher with a nonce

- “nonce” = “number once”.
- Usually denoted IV = “initialization vector”

Stream cipher with a nonce: Algorithm G that takes two
inputs and produces a very long bit-string as output.

1100..11

11111010001000111010100101000101100100111100…

1100..11

Key/Seed k:Nonce IV:

G(IV,k):

Security goal: When k is random and unknown, G(IV,k) should
“look” random and independent for each value of IV.

Solution 1: Stream cipher with a nonce

m1

⨁ G(IV,k)

k

k

ciphertext

IV←0

IV

IV←IV+1

…

m2

⨁

ciphertext

G(IV,k)

IV

- If nonce repeats, then pad repeats

Example of Pad Re-use: WEP Warning: Broken

IEEE 802.11b WEP: WiFi security standard ’97-‘03

IV

IV is 24-bit wide counter

- Repeats after 224 frames (≈16 million)
- IV is often set to zero on power cycle

Solutions: (WPA2 replacement)
- Larger IV space, or force rekeying more often
- Set IV to combination of packet number, address, etc

Example of Pad Re-use: WEP Warning: Broken

IEEE 802.11b WEP: WiFi security standard ’97-‘03

IV

IV is 24-bit wide counter

- Repeats after 224 frames (≈16 million)
- Often set to zero on reset

Solutions: (WPA2 replacement)
- Larger IV space, or force rekeying more often
- Set IV to combination of packet number, address, etc

Issues with One-Time Pad

1. Reusing a pad is insecure
2. One-Time Pad is malleable
3. One-Time Pad has a long key

Use unique nonces

Use stream cipher with short key

More difficult to address; We will return to this later.

Rest of this lecture

- Symmetric Encryption Basics
- Stream Ciphers
- Block Ciphers

Next Up: Blockciphers

Blockciphers are a ubiquitous crypto tool applied to many
different problems.

Informal definition: A blockcipher is essentially a
substitution cipher with a very large alphabet and a very
compact key. Require that efficient algorithms for forward and
backward directions.

Typical parameters:
Alphabet = {0,1}128
Key length = 16 bytes.

Now: Two example blockciphers, DES and AES.
Plan: Build many higher-level protocols from a good blockcipher.

Data Encryption Standard (DES)

- Originally a designed by IBM
- Parameters adjusted by NSA
- NIST Standard in 1976

- Block length n = 64
- Key length k = 56

L0 R0

L1 R1

⨁

F1

L2 R2

⨁

F2

Parses input block into 32-bit
chunks and applies 16
rounds of a “Feistel Network”

DES is Broken

Attack Complexity Year

Biham&Shamir 247 encrypted blocks 1992

DESCHALL 41 days 1997

EFF Deepcrack 4.5 days 1998

EFF Deepcrack 22 hours 1999

- 3DES (“Triple DES”) is still used by banks
- 3DES encrypts three times (so key length is 118)
- 3DES is not known to be broken but should be avoided

Warning: Broken

Advanced Encryption Standard (AES)

- NIST ran competition to replace DES starting in 1997
- Several submissions, Rijndael chosen and standardized
- AES is now the gold standard blockcipher
- Very fast; Intel chips even have AES instructions

- Due to Rijmen and Daemen
- Block length n = 128
- Key length k = 128,192,256

M

⨁

P1

- Different structure from DES.
- 10 rounds of “substitution-

permutation network”

Advanced Encryption Standard (AES)

K1

P2

K2

P3

⨁

AES is not (know to be) broken

Attack Complexity Year

Bogdanov et al. ≈2126.1 2011

- Compare to trying all keys: 2126.1 ≈ 2128 /4

- Always prefer AES for a blockcipher if setting can
support it (i.e. everything except low-power hardware)

Blockcipher Security

- AES is thought to be a good “Pseudorandom Permutation”

AESK()

x

AESK(x)
rand()

x

rand(x)Vs

- Outputs all look random and independent, even when
inputs are maliciously controlled.

- Formal definition in CS284.

Example - AES Input/Outputs

-K1: 9500924ad9d1b7a28391887d95fcfbd5
-K2: 9500924ad9d1b7a28391887d95fcfbd6

AESK1(00..00)=8b805ddb39f3eee72b43bf95c9ce410f
AESK1(00..01)=9918e60f2a20b1b81674646dceebdb51
AESK2(00..00)=1303270be48ce8b8dd8316fdba38eb04
AESK2(00..01)=96ba598a55873ec1286af646073e36f6

- Keys and inputs are 16 bytes = 128 bits

So we have a blockcipher…

- Now what?

It only processes 16 bytes at a time, and I have a whole
lot more data than that.

This next step is where everything flies off the rails in
implementations…

Encrypting large files: ECB Warning: Broken

AESK()

- ECB = “Electronic Code Book”

M1

C1

AESK()

M2

C2

AESK()

Mt

Ct

. . .

AES-ECBk(M)
- Parse M into blocks M1, M2, …, Mt  

// all blocks except Mt are 16 bytes
- Pad Mt up to 16 bytes
- For i=1…t:

- Ci ← AESk(Mi)
- Return C1 ,…, Ct

The ECB Penguin Warning: Broken

- 16 byte chunks are consecutive pixels

- It gets even worse…

Plaintext ECB Ciphertext

Encrypting large files, Attempt #2: CTR

- CTR = “Counter Mode”
- Idea: Build a nonce-based stream cipher from AES

AES-CTRk(IV,M)
- Parse M into blocks M1, M2, …, Mt  

// all blocks except Mt are 16 bytes
- For i=1…t:

- Ci ← Mi⊕AESk(IV+i)
- Return IV, C1 ,…, Ct

AESK()

IV

C1

AESK()

IV+1

. . .

IV+2

AESK()

IV+t

IV

M1

C2

M2

Ct

Mt

Notes:
- No need to pad last block
- Must avoid reusing part of

stream

When combined with
authentication, CTR is a
good cipher.

Penguin Sanity Check

Plaintext ECB Ciphertext CTR Ciphertext

Looks random

Encrypting large files, Attempt #3: CBC

- CBC = “Cipher Block Chaining”
- Nonce-based, but not a stream

cipher
- Historical option (sometimes

used without nonce)

AES-CBCk(IV,M)
- Parse M into blocks M1, M2, …, Mt  

// all blocks except Mt are 16 bytes
- Pad Mt up to 16 bytes
- C0←IV
- For i=1…t:

- Ci ← AESk(Mi⊕Ci-1)
- Return C0,C1 ,…, Ct

AESK()

IV

C1

AESK() . . . AESK()

IV C2 Ct

Mt

M1 M2 Mt

…

AES-1K()

IV

M1

AES-1K()

M2

C1 C2
Decryption

. . .

Encrypting large files, Attempt #3: CBC

- CBC = “Cipher Block Chaining”
- Nonce-based, but not a stream

cipher
- Historical option (sometimes

used without nonce)

AES-CBCk(IV,M)
- Parse M into blocks M1, M2, …, Mt  

// all blocks except Mt are 16 bytes
- Pad Mt up to 16 bytes
- C0←IV
- For i=1…t:

- Ci ← AESk(Mi⊕Ci-1)
- Return C0,C1 ,…, Ct

AESK()

IV

C1

AESK() . . . AESK()

IV C2 Ct

Mt

M1 M2 Mt

… When combined with
authentication, CBC is a
good cipher.

Warning: Padding creates
havoc with authentication.
Very difficult to implement.

- AES is unbroken
- AES-CTR is most robust construction for confidentiality
- AES-CTR/AES-CBC do not provide authenticity/integrity and should

almost never be used alone.

Blockcipher Encryption Summary

The End

