
David Cash and Blase Ur

Basic Computer Security
Concepts and Threat Modeling;

Begin Operation System Concepts
CMSC 23200/33250, Winter 2021, Lecture 2

University of Chicago

Outline for Lecture 2

• Reflect on Chapter 1

• Run through working example: Police Body Cams

• Apply concepts from Chapter 1, particularly threat modeling

• Begin OS Security

Lessons from history in Lecture 1

• Security is very, very, hard, even for well-resourced, motivated
organizations.

• We need tools and techniques to systematize our thinking rather
than scattershot approaches.

• Chapter 1 begins doing this!

[van Oorschot’20], Chapter 1: Summary

1. Fundamental goals of computer security

2. Computer security policies and attacks

3. Risk, risk assessment, and modeling expected losses

4. Adversary modeling and security analysis

5. Threat modeling: diagrams, trees, lists and STRIDE

6. Model-reality gaps and real-world outcomes

7. Design principles for computer security

8. Why computer security is hard

Understanding Chapter 1
1. Fundamental goals of computer security
2. Computer security policies and attacks
3. Risk, risk assessment, and modeling expected losses
4. Adversary modeling and security analysis
5. Threat modeling: diagrams, trees, lists and STRIDE
6. Model-reality gaps and real-world outcomes
7. Design principles for computer security
8. Why computer security is hard

How should one read a chapter like this? Memorize definitions and lists?

Maybe? But not all of them…
Familiarize yourself with common ideas.

Understand systems that you encounter. Recognize and explain mistakes.

Relating Chapter 1 to David (&Blase?)’s Research
and Consulting Experience

A Running Example: Police Body Cams

• Worn continuously by police while on duty. Records activity to storage.

• Used in court, training, adjudicating complaints, …

These should be “secure” right? Where to start?

Start with van Oorschot’s 6 Fundamental Goals?

1. Confidentiality

2. Integrity

3. Authorization

4. Availability

5. Authentication

6. Accountability

Maybe, but probably start with needs of application.

Example partial list:
- Videos should be useful. Good quality and

authenticated.
- Videos should not “disappear” when someone

wants them to.
- Videos should be accessible “when appropriate”,

but otherwise confidential.

Still not clear how to apply goals!

Steps Extracted from Chapter 1

1. Articulate policies surrounding data and other assets.

2. Diagram system in a simple yet useful way.

3. Model adversary categories.

4. Engage in “threat modeling” to enumerate relevant attacks by
adversaries against diagrammed system.

Who in the org should actually do this?

Arguably: Organization leadership (CIO/CTO/CISO),
middle management, operators, outside

stake-holders.

Step 1: Assets

1. Video data

2. Actual cameras

3. Camera configuration equipment

4. Administration server

5. Remote storage account (third party)

More?

Step 1: Policies

1. Video data should only be deleted of X years.

- Internal process to redact accidental recordings (officer in
bathroom)

2. Video should only be accessible with court approval.

- But administrators will need to be trusted

3. Only authentic videos from official cams should be stored.

4. Police should not be able to turn camera off without being logged.

More?

Step 2: Diagram the System

Body Cams
Docking Stations 3rd party storage

Administrator Workstation

Upload video Upload video

Transmit config

Config

Usage stats

Investigator Workstation

View video

• Principle components

• Interactions

• Sometimes: “Trust boundaries” (e.g. cloud vs. on-premises)

Step 3: Begin Adversary Modeling

1. Corrupt police officer hiding activity

2. Corrupt police department hiding activity

3. Corrupt administrator spying

4. Criminal trying to delete video

5. Domestic hacker (outsider) seeking videos

6. Insider at body cam vendor planting backdoor

7. Insider at storage provider snooping videos

8. Foreign government-level hackers fomenting distrust of government

More?

Step 4: Threat Modeling

Examples:
- STRIDE (Microsoft)
- Attack Trees
- Center of Gravity (CoG)
- PASTA
- DREAD
- …

Threat Modeling = Brainstorming Crutch for “What could go wrong?”

STRIDE Threat Modeling

Brainstorm attacks that fit each of six categories:

Spoofing

Tampering

Repudiation

Information disclosure

Denial of service

Elevation of privilege

• Can search for each type against each component in diagram

• Can search for each type as mounted by adversaries

STRIDE-by-Component Exercise

Body Cams
Docking Stations 3rd party storage

Administrator Workstation

Upload video Upload video

Transmit config

Config

Usage stats

Investigator Workstation

View video

Spoofing in…

STRIDE-by-Component Exercise

Body Cams
Docking Stations 3rd party storage

Administrator Workstation

Upload video Upload video

Transmit config

Config

Usage stats

Investigator Workstation

View video

Tampering in…

Chapter 1 Conclusions

• Brainstorming hopefully leads to reasonably complete list of threats.

• Feed them into mitigation strategies (e.g. “use strong passwords”).

• Threat modeling is incomplete, and still relies on experience.

Where does the class go from here?

• We look at security issues in a variety of important settings

• Aim is for security to be a vehicle itself to learn about hardware,
OSes, networking, databases, phones, …

• Issues in Chapter 1 will suffuse through topics, giving us a language
to explain designs and mistakes

• But we won’t engage in systematic threat modeling.

Outline for Lecture 2

• Reflect on Chapter 1

• Run through working example: Police Body Cams

• Apply concepts from Chapter 1, particularly threat modeling

• Begin OS Security

Review of OS Structure

Operation System Kernel

Process Process Process

Application

Process Process Process

Application

…

CPU Memory Network Disk Display …

Security/safety: Must protect processes from each other, protect hardware, …

Questions, though:
• What distinguishes the kernel from not-kernel?
• What is a process?

How a CPU (x86) Works (extremely high level)

CPU

…

Registers

EAX

Memory

0000…00
0000…04
0000…08

<max>

EBX EBPCPL ESP EIP
Next instruction

Memory Access:
- Reads move word of memory into register
- Writes move register to memory

Read/write memory
into registers

…

CPU

How a CPU (x86) Works (extremely high level)

…

Registers

EAX

Memory

0000…00
0000…04
0000…08

<max>

EBX EBPCPL ESP EIP
Next instruction

Repeat until HALT:
1. Fetch instruction inst pointed to by EIP
2. Execute logic of inst
3. Increment EIP (or update it if inst=jmp)

In some cases “interrupts” can occur, which change EIP to
point at interrupt handler (pointed to by a special reg).

Memory Management Unit (MMU)

CPU

…

Registers

EAX

Memory

0000…00
0000…04
0000…08

<max>

EBX EBPCPL ESP EIP

READ addr
MMU

READ addr’

• MMU translates addresses depending on state
• Input address to MMU are called “virtual addresses”
• MMU set up by executing special instructions
• Amazing tricks: Two different virtual addresses can

map to same address, etc…

Isolation in x86: It all comes down to CPL

CPU

…

Registers

EAX

Memory

0000…00
0000…04
0000…08

<max>

EBX EBPCS ESP EIP

MMU

• CPL is “current privilege level”, two designated bits in CS register

• If CPL = 0: Then processor will execute any instruction

• If CPL = 3: Then processor will only execute subset of
instructions

Isolation in x86: It all comes down to CPL

CPU

…

Registers

EAX EBX EBPCS ESP EIP

MMU

If CPL=0, then CPU will allow…
• Direct access to (almost) any addr
• Changes to (almost) any register
• Changes internal state of MMU
• Including setting CPL=3!

If CPL=3, then CPU will not allow…
• Direct access to memory (only via

MMU)
• Changes to several registers
• Changes to internal state of MMU
• Setting CPL=0 (!)

Big Idea: Kernel runs with
CPL=0, and all other

programs run with CPL=3.

Back to our diagram…

Operation System Kernel

Process Process Process

Application

Process Process Process

Application

…

CPU Memory Network Disk Display …

Questions, though:
• What distinguishes the kernel from not-kernel?
• What is a process?

The CPL!

What is a process?

CPU

…

Registers

EAX EBX EBPCS ESP EIP

MMU

Memory

0000…00
0000…04
0000…08

<max>

process:
state=…  
usage=…

…

• One Answer: A data structure in “kernel memory”, including
• MMU configuration
• Register values

• Kernel can load these values up, set CPL=3, and turn over
control “to the process” (i.e. set EIP)

• If kernel regains control, it can save these values to swap
process out

Handling Memory for a Process

CPU

…

Registers

EAX EBX EBPCS ESP EIP

MMU

Memory

0000…00
0000…04
0000…08

<max>

process:
state=…  
usage=…

…

• Kernel creates a “virtual address space” for each process.
• Same virtual addresses (e.g. starting near 0) can be used by

every process! They get translated to different physical
addresses.

• Kernel can also mark some virtual address ranges (called
segments) as “read only” or “do not execute” (EIP not
allowed to point there).

• Violations are SEGFAULTs: MMU will take over in this case

Handling Memory for a Process (cont.)

CPU

…

Registers

EAX EBX EBPCS ESP EIP

MMU

Memory

0000…00
0000…04
0000…08

<max>

process:
state=…  
usage=…

…

• Kernel can also map same memory into several processes’
virtual address space

• Ex: Code for malloc is not copied for every process.

Handling Memory for a Process (cont.)

CPU

…

Registers

EAX EBX EBPCS ESP EIP

MMU

Memory

0000…00
0000…04
0000…08

<max>

Kernel
memory

proc1
memory

proc2
memory

libc

• Kernel configures MMU to translate addresses for proc1:
• Read/Write/Execute to memory specific to proc1
• Read/Execute access to libc
• Possibly other special “segments”

• No access to memory to Kernel or proc2 memory!
• They’re not even mapped; MMU will never allows access!

Not mapped!

Not mapped!

System Calls: How to let processes do privileged ops

CPU

…

Registers

EAX EBX EBPCS ESP EIP

MMU

Memory

0000…00
0000…04
0000…08

<max>

syscall
handler

• A process (i.e. code running with CPL=3) often needs to do
privileged actions that the CPU won’t allow directly

• e.g. access device, write output, spawn new process, …
• System calls allow this. They work roughly as follows:

• Process sets up arguments in pre-defined registers
• Then process executes instruction int 0x80
• CPU will set CPL=0 and jump to kernel handler

Next Time

• The UNIX security model (users/root, file/process permissions, …)

• Running an executable: Function calls and “the stack”

• Begin control hijacking (i.e. how all this nice work falls apart!)

The End

