
24. Hardware Security

(Meltdown, Spectre, TEEs)

Blase Ur and David Cash 

March 4th, 2020

CMSC 23200 / 33250



Hardware Security: A Broad View

What do we trust?

How do we know we have the right code?

Recall software checksums, Subresource Integrity (SRI)

What is our root of trust? Can we establish a smaller one?

Can we minimize the Trusted Computing Base (TCB)?

Can processors’ designs for efficiency lead to insecurity?

Yes!



Trusted Platform Module (TPM)

Standardization of cryptoprocessors, or microcontrollers 

dedicated to crypto functions w/ built-in keys

Core functionality: 

1) Random number generation, crypto key creation

2) Remote attestation (hash hardware and software config and 

send it to a verifier)

3) Bind/seal data: encrypted using a TPM key and, for sealing, 

also the required TPM state for decryption

Uses: DRM, disk encryption (BitLocker), authentication



Trusted Platform Module (TPM)



Trusted Execution Environment (TEE)

TPMs are standalone companion chips, while TEEs are a 

secure area of a main processor

Guarantees confidentiality and integrity for code in TEE

Key example: Intel Software Guard Extensions (SGX)

Enclaves = Private regions of memory that can’t be read by 
any process outside the enclave, even with root access

Uses: DRM, mobile wallets, authentication



Case Study: WebAuthn

Created under the FIDO2 project, now a W3C standard

Goal: Authenticate to web apps using public-key crypto

Implemented in specialized hardware OR in software using a 

TPM/TEE



Case Study: WebAuthn

User interaction: Push a button on a key, type a PIN into the 

device, present biometric (fingerprint) to hardware reader



Case Study: WebAuthn

ds



Attacks that exploit processor vulnerabilities

Can leak sensitive data

Relatively hard to mitigate

Lots of media attention



Relevant Ideas in CPUs

Memory isolation: Processes should only be able to read 

their own memory

Virtual (paged) memory

Protected memory / Protection domains

CPUs have a (relatively small) very fast cache

Loading uncached data can take >100 CPU cycles

Out-of-order execution: Order of processing in CPU can 

differ from the order in code

Instructions are much faster than memory access; you 

might be waiting for operands to be read from memory

Instructions retire (return to the system) in order even if they 

executed out of order



Relevant Ideas in CPUs

There might be a conditional branch in the instructions

Speculative execution: Rather than waiting to determine 

which branch of a conditional to take, go ahead anyway

Predictive execution: Guess which branch to take

Eager execution: Take both branches

When the CPU realizes that the branch was mis-

speculatively executed, it tries to eliminate the effects

A core idea underlying Spectre/Meltdown: The results of the 

instruction(s) that were mis-speculatively executed will be 

cached in the CPU [yikes!]



Example (Not bad)

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html



Example (Bad!!!)

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html



Spectre: Key idea

Use branch prediction as on the previous slide

Conducting a timing side-channel attack on the cache

Determine the value of interest based on the speed with 

which it returns

Spectre allows you to read any memory from your process 

for just about every CPU



Spectre: Exploitation scenarios

Leaking browser memory

A JavaScript (perhaps in an advertisement) can run Spectre

Can leak browser cache, session key, other site data



Meltdown: Key idea

1. Attempt instruction with memory operand (Base+A), 

where A is a value forbidden to the process

2. The CPU schedules a privilege check and the actual 

access

3. The privilege check fails, but due to speculative 

executive, the access has already run and the result 

has been cached

4. Conduct a timing attack reading memory at the 

address (Base+A) for all possible values of A. The one 

that ran will return faster

Meltdown allows you to read any memory in the address 

space (even from other processes) but only on some 

Intel/ARM CPUs



Meltdown Attack (timing)

Now the attacker read each page of probe array

255 of them will be slow 

The Xth page will be faster (it is cached!)

We get the value of X using cache-timing side channel

X = 84



Meltdown: Mitigation

KAISER/KPTI (kernel page table isolation) patch 

Remove kernel memory mapping in user space processes

Have non-negligible performance impact 

Some kernel memory still needs to be mapped


