24. Hardware Security
(Meltdown, Spectre, TEES)

£V

Blase Ur and David Cash
March 4th, 2020 =4 THE UNIVERSITY OF

CMSC 23200 / 33250 CHICAGO

Hardware Security: A Broad View

What do we truste

How do we know we have the right code?
Recall software checksums, Subresource Integrity (SRI)

What is our root of truste Can we establish a smaller one?¢
Can we minimize the Trusted Computing Base (TCB)?¢

Can processors’ designs for efficiency lead to insecurity?
Yes!

Trusted Platform Module (TPM)

Standardization of cryptoprocessors, or microcontrollers
dedicated to crypto functions w/ built-in keys

Core functionality:
1) Random number generation, crypto key creation

2) Remote attestation (hash hardware and software config and
send it to a verifier)

3) Bind/seal data: encrypted using a TPM key and, for sealing,
also the required TPM state for decryption

Uses: DRM, disk encryption (BitLocker), authentication

Trusted Platform Module (TPM)

Endorsement Key (EK)
random number
generator
Storage Root
RSA key generator

Key (SRK)

Registers (PCR)
SHA-1 hash generator
Attestation ldentity

Keys (AIK)

Platform Configuration
encryptlon-decry_ptlon- storage keys
signature engine

Trusted Execution Environment (TEE)

TPMs are standalone companion chips, while TEEs are a
secure area of a main processor

Guarantees confidentiality and integrity for code in TEE
Key example: Intel Software Guard Extensions (SGX)

Enclaves = Private regions of memory that can’t be read by
any process outside the enclave, even with root access

Uses: DRM, mobile wallets, authentication

Case Study: WebAuthn

Created under the FIDO2 project, now a W3C standard
Goal: Authenticate to web apps using public-key crypto

Implemented in specialized hardware OR in software using @
TPM/TEE

{=—00)

signed challenge

g assertionl T and PIN
PIN challenge S
+—
signed
assertion
—

(HTTPS) www.example.com

\)\ J
| |

verification authentication

Case Study: WebAuthn

User interaction: Push a button on a key, type a PIN into the
device, present biometric (fingerprint) to hardware reader

Case Study: WebAuthn

ds FIDO2 BRINGS SIMPLER, STRONGER
AUTHENTICATION TO WEB BROWSERS

O OO nhttps/mww.fidobank.com

PLEASE AUTHENTICATE

HSE]

- —

COMMITTED SUPPORT

FROM LEADING BROWSERS

AN

¢ceeo

USE WHAT'S ON YOUR PC...

OR USE YOUR DEVICE!

© 000

FIDO AUTHENTICATION: THE NEW GOLD STANDARD

1 2

Protects against phishing, Log in with a single
man-in-the-middle and gesture - HASSLE FREE!

attacks using stolen
credentials

VR

aetna BankofAmerica‘y}
ropbox €b facebook
Google décomo P PayPal

Already supported in

market by top online
services

MELTDOWN

Attacks that exploit processor vulnerabilities

Can leak sensitive data
Relatively hard to mitigate
Lots of media attention

meltdown and spectre attack 4 Q

All MNews Videos Shopping Images More Settings Tocls

About 279,000 results (0.47 seconds)

Top stories

o .

‘@C/

Microsoft Confirms Spectre and Meltdown: Apple releases new
System Slowdowns Insecurity at the heart security update to
from Fixes to Meltdown of modern CPU design protect Safari against
and Spectre Attack... the Spectre attack
Redmondmag.com ZDNet The Verge

1 day ago 1 day ago 2 days ago

Relevant I[deas in CPUSs

Memory isolation: Processes should only be able to read
their own memory

Virtual (paged) memory
Protected memory / Protection domains

CPUs have a (relatively small) very fast cache
Loading uncached data can take >100 CPU cycles

Out-of-order execution: Order of processing in CPU can
differ from the order in code

Instructions are much faster than memory access; you
might be waiting for operands 1o be read from memory

Instructions retire (return 1o the system) in order even if they
executed out of order

Relevant I[deas in CPUSs

There might be a conditional branch in the instructions

Speculative execution: Rather than waiting to determine
which branch of a conditional to take, go ahead anyway

Predictive execution;: Guess which branch to take
Eager execution: Take both branches

When the CPU realizes that the branch was mis-
speculatively executed, it tries to eliminate the effects

A core idea underlying Spectre/Meltdown: The results of the
Instruction(s) that were mis-speculatively executed will be
cached in the CPU [yikes!]

Example (Not bad)

Consider the code sample below. If BEFI=STEHGEH is uncached, the processor can speculatively load data

arrl->datal . This is an out-of-bounds read. That should not
matter because the processor will effectively roll back the execution state when the branch has executed;
none of the speculatively executed instructions will retire (e.g. cause registers etc. to be affected).

struct array {
unsigned long length;
unsigned char datal[];
bi
struct array *arrl = ...;
unsigned long untrusted offset from caller = .

if (untrusted offset from caller < _)

unsigned char value = ai

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

Example (Badlll)

data[untrusted offset from caller]

e load value = arrl->
» start a load from a data-dependent offset in @iEE2=>@atd, loading the corresponding cache line
into the L1 cache

struct array {

unsigned long length;

unsigned char datal[];

}i
struct array *arrl = ...; /* small array */
struct array *arr2 = ...; /* array of size 0x400 */
/* >0x400 (OUT OF BOUNDS!) */
unsigned long untrusted offset from caller = ...;
if (untrusted offset from caller < @EEI->length)
unsigned char value = § [untrusted offset from caller];
unsigned long index2 = ((valueé&l)*0x100)+0x200;

if (index2 < arr2->length) {

unsigned char value2 = _;

After the execution has been returned to the non-speculative path because the processor has noticed that
untrusted offset from caller is bigger than BEEISSIEHGER, the cache line containing
EEE2ESaataiEER2] stays in the L1 cache. By measuring the time required to load
EEE2ESaata0=200] and EEE2ESESEEI0X800]. an attacker can then determine whether the value of

index?2 during speculative execution was 0x200 or 0x300 - which discloses whether
>data [untrusted offset from caller]s&lisOor1.

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

Spectre: Key ideo

Use branch prediction as on the previous slide
Conducting a timing side-channel aftack on the cache

Determine the value of interest based on the speed with
which it returns

Spectre allows you to read any memory from your process
for just about every CPU

Spectre: Exploitation scenarios

Leaking browser memory

A JavaScript (perhaps in an advertisement) can run Spectre
Can leak browser cache, session key, other site data

Meltdown: Key ideo

1. Attempt instruction with memory operand (Base+A),
where A is a value forbidden to the process

2. The CPU schedules a privilege check and the actual
access

3. The priviege check fails, but due to speculative
executive, the access has already run and the result
has been cached

4. Conduct a timing attack reading memory at the
address (Base+A) for all possible values of A. The one
that ran will return faster

Meltdown allows you to read any memory in the address
space (even from other processes) but only on some
Intel/ARM CPUs

Meltdown Attack (fiming)

Now the attacker read each page of probe array
255 of them will be slow
The X" page will be faster (it is cached!)
We get the value of X using cache-timing side channel

2 . 500
23 MWW
B
52 — X=84
0 50 100 150 200 250
Page

Figure 4: Even if a memory location is only accessed
during out-of-order execution, it remains cached. Iterat-
ing over the 256 pages of probe_array shows one cache
hit, exactly on the page that was accessed during the out-
of-order execution.

Meltdown: Mitigation

KAISER/KPTI (kernel page table isolation) patch
Remove kernel memory mapping in user space processes
Have non-negligible performance impact
Some kernel memory still needs to be mapped

