Digital Signatures, Certificates,
and TLS

CMSC 23200/33250, Winter 2020, Lecture 6

David Cash and Blase Ur

University of Chicago

Public-Key Encryption in Action

PK,SK<+— Kg |

PK
PK ————o— o SK
C = Enc(PK,M)
— @ O
C
PK=public key ‘ J

Known to everyone

SK=secret key “

known by Receiver only

Key Exchange with a Person-in-the-Middle

Adversary may silently sit between parties and modity messages.

Parties agree on different keys, both known to adversary...

Key Exchange with a Person-in-the-Middle

AES-GCM(K,M;) \) AES-GCM(K' ,M;)
—_— —_—

AES-GCM (K, M) AES-GCM (K’ ,M;)

Connection is totally transparent to adversary,.
Translation is invisible to parties.

® © ® privacyerror X +
& > C O A NotSecure | hitps://md5.badssl.com * ® o6 008 @

Your connection is not private

Attackers might be trying to steal your information from md5.badssl.com (for example, passwords,
messages, or credit cards). Learn more
NET::ERR_CERT_AUTHORITY_INVALID

[:] Help improve Safe Browsing by sending some system information and page content to Google. Privacy policy

ADVANCED BACK TO SAFETY

C @ https://www.schneier.com/blog/archives/2013/09/new_nsa_leak_sh.htm!

Blog >

New NSA Leak Shows MITM Attacks Against Major Internet
Services

The Brazilian television show "Fantastico" exposed an NSA training presentation that discusses how
the agency runs man-in-the-middle attacks on the Internet. The point of the story was that the NSA
engages in economic espionage against Petrobras, the Brazilian giant oil company, but I'm more
interested in the tactical details.

The video on the webpage is long, and includes what | assume is a dramatization of an NSA
classroom, but a few screen shots are important. The pages from the training presentation describe
how the NSA's MITM attack works:

However, in some cases GCHQ and the NSA appear to have taken a more aggressive
and controversial route -- on at least one occasion bypassing the need to approach
Google directly by performing a man-in-the-middle attack to impersonate Google
security certificates. One document published by Fantastico, apparently taken from an
NSA presentation that also contains some GCHQ slides, describes “how the attack was

Anna” tn annaranthi ennnn nn QQl trafficr Tha Aariimant illilietratace with a Aianaram hAaue

Authenticating PK “Out of Band”

all VZW Wi-Fi = 3:53 PM

.4 Verify Safety Number

You have not marked +1
as verified.

Tap to Scan

27472 37554 90485 91996
35297 72831 95945 88302
31164 34110 57537 20193

If you wish to verify the security of your end-to-end
encryption with +1 , compare the numbers
above with the numbers on their device.

Alternatively, you can scan the code on their phone, or ask
them to scan your code.

Learn More

+ Mark as Verified

Next up: Tool for Stopping the Person-in-the-Middle

- Digital Signatures
- Public-Key Infrastructure (PKI)
- Certificates and chains of trust

Crypto Tool: Digital Signatures

Definition. A digital signature scheme consists of three algorithms
Kg, Sign, and Verify

- Key generation algorithm Kg, takes no input and outputs a
(random) public-verification-key/secret-signing key pair (PK, SK)

- Signing algorithm Sign, takes input the secret key SK and a
message M, outputs “signature” 0«Sign(SK,M)

- Verification algorithm Verify, takes input the public key PK, a
message M, a signature o, and outputs ACCEPT/REJECT
Verify(PK,M,0)=ACCEPT/REJECT

Digital Signature Security Goal: Unforgeability

PK,SK < Kg |

M .
> o,M o’,M’ Verify(PK,0' ,M’)?

>
O<Sign(SK,M) “ “ ACCEPT/

REJECT

Scheme satisfies unforgeability if it is unfeasible for
Adversary (who knows PK) to fool Bob into accepting M’ not
previously sent by Alice.

“Plain” RSA with No Encoding 8 eroven &
PK = (N,e) SK=(N,d) where N=pgqg, ed=1 mod ¢(N)

Messages & sigs

Sign((N, d), M) = M9 mod N are in 7%
N
Verity((NV, e), M, 6) : 6° = Mmod N?!

e = 3 is common for fast verification: Assume e=3 below.

“Plain” RSA Weaknesses 8 eroven &

Assume e=3.

Sign((N,d),M) = M‘mod N Verify((N,3),M,0) : 6° = Mmod N?

To forge a signature on message M’ : Find number 6’ such that (0’)3=M’ mod N

M=1 weakness: |[f M’'=1 then it is easy to forge. Take 0’ =1:

(0'3)=13=1=M' mod N J

Cube-M weakness: If M’ is a perfect cube then it is easy to forge.
Justtake o'=(M")1/3; i.e. the usual cube root of M":

Example: To forge on M’ =8, which is a perfect cube, set 0’ =2.

(G)3=23=8=M' mod N /

(Intuition: It cubing does not “wrap modulo N”, then it is easy to un-do.)

Further “Plain” RSA Weaknesses & sroken &)

Assume e=3.

Sign((N,d),M) = M‘mod N Verify((N,3),M,0) : 6° = Mmod N?

To forge a signature on message M’ : Find number 6’ such that (0’)3=M’ mod N

Malleability weakness: If 0 is a valid signature for M, then it is easy to forge
a signature on 8M mod N.

Given (M, 0), compute forgery (M’,0') as

M'= (8*M mod N),and 6’'=(2*0 mod N)
Thenverify((N,3),M’,0’) checks:

(0')3=(2*0 mod N)3 = (23*¥03 mod N) = (23*M mod N) = 8M mod N

N v

03=M mod N b/c o is valid sig. on M

Further “Plain” RSA Weaknesses & sroken &)

Sign((N,d),M) = M‘mod N Verify((N,3),M,0) : 6° = Mmod N?

To forge a signature on message M’ : Find number 6’ such that (0’)3=M’ mod N

Backwards signing weakness: (Generate some valid signature by picking
o’ first, and then defining M’'=(0'3 mod N)

Then verify((N,3),M’,0’) checks:

(0')3=(M' mod N) / P

0

y —
-

<

Further “Plain” RSA Weaknesses & sroken &5

Sign((N,d),M) = M‘mod N Verify((N,3),M,0) : 6° = Mmod N?

To forge a signature on message M’ : Find number 6’ such that (0’)3=M’ mod N

summary:

- Plain RSA Signatures allow several types of forgeries

- It was sometimes argued that these forgeries aren’t important: If M is english text,
then M’ is unlikely to be meaningful for these attacks

- But often they are damaging anyway

RSA Signatures with Encoding
PK=(N,e) SK=(N,d) where N=pq, ed=1mod ¢(N)

Messages & sigs

Sign((N, d), M) = encode(M ¥ mod N N
N
Verity((V, e), M, o) : 6° = encode(M) mod N?

encode maps bit strings to numbers in Z;‘\j

Encoding needs to address:

Encoding must be chosen
- Small M or M = perfect cube B Sy

- Malleability (sl’)ﬁ Broken @)
- Backwards signing

RSA Signature Padding: PKCS #1 v1.5

Note: We already saw PKCS#1 v1.5 encryption padding. This is
signature padding. It is different.

N: n-byte long integer. Ex: for H=SHA-256,

H: Hash function. |_— hash_id = 3051..0440
hash id: Magic number assigned to H

Sign((N,d),M): Verify((N,3),M,0):

1. digestchash_id||H(M) // m bytes long ;. Xe (03 mod N)

2. pad<FF| |FF||..| |FF// n-m-3 ‘FE’ bytes 5 parse X—aa| |bb||Y||cc||digest
3. X<00]|01]|pad|[00]|digest 3. If aa#00 or bb=01 or cc=00

4, Output 0 = Xd mod N or Y#(FF)n-n-3

or digest#hash id||H(M):
Output REJECT

, 4, Else: Output ACCEPT
Encoding needs to address:

- Perfect cubes > The high-order bits + digest means X is

- Malleability — large and random-looking, rarely a cube.

—> .
- Backwards signing \ Stopped by hash, ex: H(2*M)#2*H (M)
Stopped by hash: given digest, hard to find M

such that H(M)=digest.

RSA Signature Padding: PKCS #1 v1.5

Note: We already saw PKCS#1 v1.5 encryption padding. This is
signature padding. It is different.

N: n-byte long integer. Ex: for H=SHA-256,

H: Hash function. |_— hash_id = 3051..0440
hash id: Magic number assigned to H

Sign((N,d),M): Verify((N,3),M,0):

1. digestchash_id||H(M) // m bytes long ;. Xe (0% mod N)

2. pad<FF| |FF||..| [FF// n-m-3 'FF’' bytes 5 p.rge x-aal|bb||Y||cc||digest
3. X<00| [01] |pad||00]||digest 3. If aa#00 or bb#01 or cc#00

4, Output 0 = Xd mod N or Y#(FF)n-n-3

or digest#hash id||H(M):
Output REJECT
4, Else: Output ACCEPT

Introduces new weakness:

- Hash collision attacks: fH(M) = H(M'), then ...

Sign((N,d),M) = Sign((N,d),M")

- l.e., can reuse a signature for M as a signature for M’

Now: A Buggy Implementation, with an Attack

- Padding check is often implemented incorrectly

- Enables forging of signatures on arbitrary messages

Real-world attacks against:
- OpenSSL (2006)
- Apple OSX (2000)
- Apache (2000)
- VMWare (2006)
- All the biggest Linux distros (2006)
- Firefox/Thunderbird (2013)

(at least 6 more in 2018 alone)

https://i.blackhat.com/USA-19/Wednesday/us-19-Chau-A-Decade-After-Bleichenbacher-06-RS A-Signature-Forgery-Still-Works-wp.pdf

https://i.blackhat.com/USA-19/Wednesday/us-19-Chau-A-Decade-After-Bleichenbacher-06-RSA-Signature-Forgery-Still-Works-wp.pdf

&\ Broken &\

Buggy Verification in PKCS #1 v1.5 RSA Signatures

Sign((N,d),M):

1. digest<hash id||H(M) // m bytes long
2. pad<FF| |FF||..| |FF// n-m-3 ‘FF’ bytes
3. X<00||01| |pad||00| |digest

4, Output 0 = Xd mod N

BuggyVerify((N,3),M,0):

1.
2.
3.

X< (03 mod N)

Parse X—aa| |bb| |rest

If aa#00 or bb#01:
Output REJECT

. Parse rest=(FF)p||00| |digest]| |...,

where p 1s any positive number

. If digest#hash id||H(M):

Output REJECT

. Else: Output ACCEPT

Correct: X

Buggy: X

One or more FF bytes

Verify((N,3),M,0):

l. X< (03 mod N)
2. Parse X~aal |bb||Y||cc||digest
3. If aa#00 or bb#01 or cc#00
or Y#(FF)n-m-3
or digest#hash id||H(M):
Output REJECT
4, Else: Output ACCEPT

Checks if rest starts with any
number of FF bytes followed by a 00

byte.

If SO, it takes the next m bytes as digest.

00 01 FF FF FF FF FF FF FF FF 00 <DIGEST>

00 01 FF 00 <DIGEST> <IGNORED ... BYTES>

20

\'9\ Broken &\
Attacking Buggy Verification

One or more FF bytes

l

Buggy: X = 00 01 FF 00 <DIGEST> <IGNORED ... BYTES>

To forge a signature on message M’ : Find number 6’ such that

(0')3= 00 01 FF 00 H(M’) <JUNK> mod N

] \ ™~

1 \ ~
We'll use one FF byte m bytes long n-m-4 bytes free

for attacker to pick

Freedom to pick <JUNK> means we can take any 6’ such that:

00 01 FF 00 H(M’) 00 ... 00 < (0')3=< 00 01 FF 00 H(M') FF ... FF

Sufficient to find: Any perfect cube in the given range. Then apply perfect cube
attack.

Fun! (Assignment 2)

Steps in Attack

1. Pick M you want to forge a signature on.
2. Compute lower and upper bounds (numbers), using H(M).
3. Find a perfect cube x within allowed range.

4. Output cube root of x as forged signature o.

Why do so many people make this error?

- | don't really know for sure
- My guesses:

- Plugging in libraries for padding removal without checks.

- Specifically, ASN.1 parsing libraries are used to remove
padding. These are overkill and programmers do not fully
understand their behavior (but they also don't want to do the
parsing by hand).

- Traditional unit testing is hard to apply to crypto.

- Note: Attack (and others) defeated by using large e=65537

- Example of defense-in-depth

Other RSA Padding Schemes: Full Domain Hash

N: n-byte long integer.
H: Hash fcn with m-byte output Ex: SHA-256, m=32
k = ceil((n-1)/m)

Sign((N,d),M):

1. X<00[[H(L[[M) | [H(2] M) [].|[H(K]|M)
2. Output 0 = Xd mod N

Verify((N,e),M,0):

1. x<00]| [H(1[[M) | |B(2][M)]]| |H(K][M)
2. Check if 0e = X mod N

Bonus: Can prove security,
INn a strong sense.

Other RSA Padding Schemes: PSS (In TLS 1.3)

- Somewhat complicated
- Randomized signing

M

Bonus: Can prove security,
in a strong sense. (CS284!) @

M' = | 8 0x00 bytes| mHash salt

DB = PS | Ox01 salt @

. 4 . 4
EM = maskedDB H

TF

RSA Sighature Summary

- Plain RSA signatures are very broken

- PKCS#1 v.1.5 is widely used, in TLS, and fine if implemented
correctly

- Full-Domain Hash and PSS should be preferred

- Don’t roll your own RSA signatures!

Other Practical Signatures: DSA/ECDSA

- Based on ideas related to Diffie-Hellman key exchange

- Secure, but even more ripe for implementation errors

Hackers obtain PS3 private
cryptography key due to epic
programming fail? (update)

@ 2

Sony’s ECDSA code

int @tRondomN\mber()

return Y. // chosen by fair dice roll.
/| Quaranteed to be random.

Public-Key Infrastructure (PKI)

- Main application for digital signatures are certificates, used in TLS
and other protocols

- Used to support a “public-key infrastructure”

Certificates (Basic |dea)
Certificate Authority (CA)

0:1=Sign(SK*,"google.com| |PK1")

(PK*, SK*)
PK;
<
(PK1,SK1)
cert;
certi:=[PKi, "google.com",01]
google.com
PK»>
PK*
cert;

(PK2, SKy)

cert,=[PK,, "uchicago.edu",0:]

uchicago.edu

- Trusted CA “issues certs”, i.e. signs public keys of other orgs.

Certificates (Basic |dea)

- Certificates in general are a tuple (PK,metadata, 0)

- PK is public-key (may be for encryption, or for signature
verification)

- The metadata domain name, company info, sometimes
addresses, crypto protocols to use, expiration date, etc.

- 0 is a signature on PK+metadata under CA's signing key.
- Issuing a cert involves varying levels of due diligence by CA

- If CA Is negligent, then entire system is not trustworthy!

Authenticated Key Exchange with Certs

CA’s verification

key PK*
(Pick random ClientHello PK,SK
AES key K) -_——m™m§mp

cert;=[PK,""google.com” ,0*]
G ———————————

Challenge: R
L ———————

0 =Sign(PK,R)
-— - s

C = Enc(PK;,K)
—_—

N 4—

PK* correct= PK; correct= Person-in-the-Middle defeated!

Authenticated Key Exchange with Certs

CA’s verification
key PK*

. PK, SK
(Pick random ClientHello ClientHello ,

AES key K) —>£ J—>

cert= “ cert=
[PK’,""google.com”, ?] [PK, "google.com",0]

—

K<Dec (SK,C)

’ !

K

Adversary must forge signature, or trick CA into issuing cert.

Authenticated Key Exchange Notes

- Authentication is “unilateral” or “one-sided”

- You are convinced you're talking to google.com, but google.com
has no idea who they are talking to.

- However google.com knows they are continuing to talk to whoever
sent C

- You convince google.com Of your identity using a password, not TLS.

CA’s verification ClientHello PK1, SK1
—
key VK*

cert:=[PKi,"google.com",01]

—

C = Enc(PK;,K)

0'
.0
.0
.0
.0
.0
Ry Dec (SK;,C)
l & AES-GCM(K, M)
. ‘t“ l

K .O ““

Sent by same party. K

The Enad

