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Public-Key Encryption in Action

PK=public key 
known to everyone

SK=secret key 
known by Receiver only
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Key Exchange with a Person-in-the-Middle
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Adversary may silently sit between parties and modify messages. 

Parties agree on different keys, both known to adversary… 



Key Exchange with a Person-in-the-Middle

AES-GCM(K,M1)

AES-GCM(K’,M2)

K K’

AES-GCM(K’,M1)

AES-GCM(K,M2)

Connection is totally transparent to adversary. 
Translation is invisible to parties.







Authenticating PK “Out of Band”



Next up: Tool for Stopping the Person-in-the-Middle

- Digital Signatures 
- Public-Key Infrastructure (PKI) 
- Certificates and chains of trust



Definition. A digital signature scheme consists of three algorithms 
Kg, Sign, and Verify 
 
- Key generation algorithm Kg, takes no input and outputs a 

(random) public-verification-key/secret-signing key pair (PK,SK)  

- Signing algorithm Sign, takes input the secret key SK and a 
message M, outputs “signature” σ←Sign(SK,M)  

- Verification algorithm Verify, takes input the public key PK, a 
message M, a signature σ, and outputs ACCEPT/REJECT 

 Verify(PK,M,σ)=ACCEPT/REJECT

Crypto Tool: Digital Signatures



Digital Signature Security Goal: Unforgeability

σ←Sign(SK,M)

σ,M σ’,M’

ACCEPT/  
REJECT

Scheme satisfies unforgeability if it is unfeasible for 
Adversary (who knows PK) to fool Bob into accepting M’ not 
previously sent by Alice.

Verify(PK,σ’,M’)?

KgPK,SK

M



PK = (N, e) SK = (N, d) N = pq, ed = 1 mod ϕ(N)where

Sign((N, d), M) = Md mod N
Verify((N, e), M, σ) : σe = M mod N?

Messages & sigs 
are in ℤ*N

“Plain” RSA with No Encoding  Broken

e = 3 is common for fast verification; Assume e=3 below.



Sign((N, d), M) = Md mod N Verify((N,3), M, σ) : σ3 = M mod N?

“Plain” RSA Weaknesses  Broken

Cube-M weakness: If M’ is a perfect cube then it is easy to forge.  
Just take  σ’=(M’)1/3:, i.e. the usual cube root of M’:

To forge a signature on message M’: Find number σ’ such that (σ’)3=M’ mod N

M=1 weakness: If M’=1 then it is easy to forge. Take σ’=1: 
                                          

Assume e=3.

(Intuition: If cubing does not “wrap modulo N”, then it is easy to un-do.)

(σ’3)=13=1=M’ mod N

Example: To forge on M’=8, which is a perfect cube, set σ’=2.
(σ’)3=23=8=M’ mod N



Sign((N, d), M) = Md mod N Verify((N,3), M, σ) : σ3 = M mod N?

Further “Plain” RSA Weaknesses  Broken

Malleability weakness: If σ is a valid signature for M, then it is easy to forge 
a signature on 8M mod N.

Given (M,σ), compute forgery (M’,σ’) as

Then Verify((N,3),M’,σ’) checks: 

M’= (8*M mod N), and σ’=(2*σ mod N)

(σ’)3=(2*σ mod N)3 = (23*σ3 mod N) = (23*M mod N) = 8M mod N

To forge a signature on message M’: Find number σ’ such that (σ’)3=M’ mod N

σ3=M mod N b/c σ is valid sig. on M

Assume e=3.



Sign((N, d), M) = Md mod N Verify((N,3), M, σ) : σ3 = M mod N?

Further “Plain” RSA Weaknesses  Broken

Backwards signing weakness: Generate some valid signature by picking 
σ’ first, and then defining M’=(σ’3 mod N)

To forge a signature on message M’: Find number σ’ such that (σ’)3=M’ mod N

Then Verify((N,3),M’,σ’) checks: 

(σ’)3=(M’ mod N)



Sign((N, d), M) = Md mod N Verify((N,3), M, σ) : σ3 = M mod N?

Further “Plain” RSA Weaknesses  Broken

To forge a signature on message M’: Find number σ’ such that (σ’)3=M’ mod N

Summary: 
- Plain RSA Signatures allow several types of forgeries 
- It was sometimes argued that these forgeries aren’t important: If M is english text, 

then M’ is unlikely to be meaningful for these attacks 
- But often they are damaging anyway



PK = (N, e) SK = (N, d) N = pq, ed = 1 mod ϕ(N)where

Sign((N, d), M) = encode(M)d mod N
Verify((N, e), M, σ) : σe = encode(M) mod N?

Messages & sigs 
are in ℤ*N

RSA Signatures with Encoding

encode maps bit strings to numbers inℤ*N

Encoding must be chosen  
with extreme care.

 Broken

Encoding needs to address: 
- Small M or M = perfect cube 
- Malleability 
- Backwards signing



RSA Signature Padding: PKCS #1 v1.5
Note: We already saw PKCS#1 v1.5 encryption padding. This is 
signature padding. It is different.

Encoding needs to address: 
- Perfect cubes 
- Malleability 
- Backwards signing

The high-order bits + digest means X is  
large  and random-looking, rarely a cube.

Stopped by hash, ex: H(2*M)≠2*H(M)

Stopped by hash: given digest, hard to find M  
such that H(M)=digest.

Sign((N,d),M):
1. digest←hash_id||H(M) // m bytes long
2. pad←FF||FF||…||FF// n-m-3 ‘FF’ bytes
3. X←00||01||pad||00||digest
4. Output σ = Xd mod N

N: n-byte long integer. 
H:  Hash function. 
hash_id: Magic number assigned to H

Ex: for H=SHA-256,  
hash_id = 3051…0440

Verify((N,3),M,σ):
1. X←(σ3 mod N)
2. Parse X➞aa||bb||Y||cc||digest
3. If aa≠00 or bb≠01 or cc≠00  

 or Y≠(FF)n-m-3  
 or digest≠hash_id||H(M):  
   Output REJECT

4. Else: Output ACCEPT



RSA Signature Padding: PKCS #1 v1.5
Note: We already saw PKCS#1 v1.5 encryption padding. This is 
signature padding. It is different.

N: n-byte long integer. 
H:  Hash function. 
hash_id: Magic number assigned to H

Introduces new weakness: 
- Hash collision attacks: If H(M) = H(M’), then … 

Sign((N,d),M) = Sign((N,d),M’)  

- i.e., can reuse a signature for M as a signature for M’

Sign((N,d),M):
1. digest←hash_id||H(M) // m bytes long
2. pad←FF||FF||…||FF// n-m-3 ‘FF’ bytes
3. X←00||01||pad||00||digest
4. Output σ = Xd mod N

Ex: for H=SHA-256,  
hash_id = 3051…0440

Verify((N,3),M,σ):
1. X←(σ3 mod N)
2. Parse X➞aa||bb||Y||cc||digest
3. If aa≠00 or bb≠01 or cc≠00  

 or Y≠(FF)n-m-3  
 or digest≠hash_id||H(M):  
   Output REJECT

4. Else: Output ACCEPT



Now: A Buggy Implementation, with an Attack

- Padding check is often implemented incorrectly 

- Enables forging of signatures on arbitrary messages

Real-world attacks against: 
- OpenSSL (2006) 
- Apple OSX (2006) 
- Apache (2006) 
- VMWare (2006) 
- All the biggest Linux distros (2006) 
- Firefox/Thunderbird (2013) 

… 
(at least 6 more in 2018 alone)

https://i.blackhat.com/USA-19/Wednesday/us-19-Chau-A-Decade-After-Bleichenbacher-06-RSA-Signature-Forgery-Still-Works-wp.pdf

https://i.blackhat.com/USA-19/Wednesday/us-19-Chau-A-Decade-After-Bleichenbacher-06-RSA-Signature-Forgery-Still-Works-wp.pdf


Buggy Verification in  PKCS #1 v1.5 RSA Signatures

BuggyVerify((N,3),M,σ):
1. X←(σ3 mod N)
2. Parse X➞aa||bb||rest
3. If aa≠00 or bb≠01:  

   Output REJECT
4. Parse rest=(FF)p||00||digest||…,  

 where p is any positive number
5. If digest≠hash_id||H(M):  

   Output REJECT
6. Else: Output ACCEPT

Checks if rest starts with any 
number of FF bytes followed by a 00 
byte.  
 
If so, it takes the next m bytes as digest.

X = 00 01 FF FF FF FF FF FF FF FF 00 <DIGEST>

X = 00 01 FF 00 <DIGEST> <IGNORED ………… BYTES>

Correct:

Buggy:

 Broken

One or more FF bytes

Sign((N,d),M):
1. digest←hash_id||H(M) // m bytes long
2. pad←FF||FF||…||FF// n-m-3 ‘FF’ bytes
3. X←00||01||pad||00||digest
4. Output σ = Xd mod N

Verify((N,3),M,σ):
1. X←(σ3 mod N)
2. Parse X➞aa||bb||Y||cc||digest
3. If aa≠00 or bb≠01 or cc≠00  

 or Y≠(FF)n-m-3  
 or digest≠hash_id||H(M):  
   Output REJECT

4. Else: Output ACCEPT



Attacking Buggy Verification

X = 00 01 FF 00 <DIGEST> <IGNORED ………… BYTES>Buggy:

 Broken

One or more FF bytes

To forge a signature on message M’: Find number σ’ such that

(σ’)3= 00 01 FF 00 H(M’) <JUNK> mod N

We’ll use one FF byte m bytes long n-m-4 bytes free  
for attacker to pick

00 01 FF 00 H(M’) 00 …… 00 ≤ (σ’)3 ≤ 00 01 FF 00 H(M’) FF …… FF

Freedom to pick <JUNK> means we can take any σ’ such that:

Sufficient to find: Any perfect cube in the given range. Then apply perfect cube 
attack.

Fun! (Assignment 2)



Steps in Attack

1. Pick M you want to forge a signature on. 

2. Compute lower and upper bounds (numbers), using H(M). 

3. Find a perfect cube x within allowed range. 

4. Output cube root of x as forged signature σ.



Why do so many people make this error?

- I don’t really know for sure 
- My guesses: 

- Plugging in libraries for padding removal without checks. 
- Specifically, ASN.1 parsing libraries are used to remove 

padding. These are overkill and programmers do not fully 
understand their behavior (but they also don’t want to do the 
parsing by hand). 

- Traditional unit testing is hard to apply to crypto. 

- Note: Attack (and others) defeated by using large e=65537
- Example of defense-in-depth



Other RSA Padding Schemes: Full Domain Hash

N: n-byte long integer. 
H:  Hash fcn with m-byte output. 
k = ceil((n-1)/m)

Ex: SHA-256, m=32

Sign((N,d),M):

1. X←00||H(1||M)||H(2||M)||…||H(k||M)
2. Output σ = Xd mod N

Verify((N,e),M,σ):
1. X←00||H(1||M)||H(2||M)||…||H(k||M)
2. Check if σe = X mod N

Bonus: Can prove security, 
in a strong sense.



Other RSA Padding Schemes: PSS (In TLS 1.3)

- Somewhat complicated 
- Randomized signing

Bonus: Can prove security, 
in a strong sense. (CS284!)



RSA Signature Summary

- Plain RSA signatures are very broken 
- PKCS#1 v.1.5 is widely used, in TLS, and fine if implemented 

correctly 
- Full-Domain Hash and PSS should be preferred 
- Don’t roll your own RSA signatures!



Other Practical Signatures: DSA/ECDSA

- Based on ideas related to Diffie-Hellman key exchange 
- Secure, but even more ripe for implementation errors



Public-Key Infrastructure (PKI)

- Main application for digital signatures are certificates, used in TLS 
and other protocols 

- Used to support a “public-key infrastructure”



Certificates (Basic Idea)
Certificate Authority (CA)

(PK*,SK*)

google.com

(PK1,SK1)
PK1

cert1
cert1=[PK1,”google.com",σ1]

uchicago.edu

(PK2,SK2)

PK2

cert2=[PK2,”uchicago.edu",σ2]

cert2
PK*

- Trusted CA “issues certs”, i.e. signs public keys of other orgs.

σ1=Sign(SK*,”google.com||PK1”)



- Certificates in general are a tuple (PK,metadata,σ)
- PK is public-key (may be for encryption, or for signature 

verification)
- The metadata domain name, company info, sometimes 

addresses, crypto protocols to use, expiration date, etc. 
- σ is a signature on PK+metadata under CA’s signing key. 

- Issuing a cert involves varying levels of due diligence by CA 
- If CA is negligent, then entire system is not trustworthy!

Certificates (Basic Idea)



Authenticated Key Exchange with Certs

PK,SK

cert1=[PK,”google.com”,σ*]

(Pick random 
AES key K)

ClientHello

K K

Dec(SK,C)

CA’s verification  
key PK*

C = Enc(PK1,K)

PK* correct⇒ PK1 correct⇒ Person-in-the-Middle defeated!

Challenge: R

σ =Sign(PK,R)



Authenticated Key Exchange with Certs

PK,SK

cert=  
[PK’,”google.com”,?]

(Pick random 
AES key K)

ClientHello

K K

K←Dec(SK,C)

CA’s verification  
key PK*

ClientHello

cert=  
[PK,”google.com",σ]

Adversary must forge signature, or trick CA into issuing cert.



Authenticated Key Exchange Notes
- Authentication is “unilateral” or “one-sided”

- You are convinced you’re talking to google.com, but google.com 
has no idea who they are talking to. 

- However google.com knows they are continuing to talk to whoever 
sent C

- You convince google.com of your identity using a password, not TLS.

PK1,SK1

cert1=[PK1,”google.com",σ1]

ClientHello

K K

Dec(SK1,C)

CA’s verification  
key VK*

C = Enc(PK1,K)

AES-GCM(K,M)

Sent by same party.



The End


