
David Cash and Blase Ur

Digital Signatures, Certificates,
and TLS

CMSC 23200/33250, Winter 2020, Lecture 6

University of Chicago

Public-Key Encryption in Action

PK=public key
known to everyone

SK=secret key
known by Receiver only

KgPK,SK

PK

PK

SK
M C = Enc(PK,M) M

C

PK

Key Exchange with a Person-in-the-Middle

PK

C C’

PK’

K K’ K’K

Adversary may silently sit between parties and modify messages.

Parties agree on different keys, both known to adversary…

Key Exchange with a Person-in-the-Middle

AES-GCM(K,M1)

AES-GCM(K’,M2)

K K’

AES-GCM(K’,M1)

AES-GCM(K,M2)

Connection is totally transparent to adversary.
Translation is invisible to parties.

Authenticating PK “Out of Band”

Next up: Tool for Stopping the Person-in-the-Middle

- Digital Signatures
- Public-Key Infrastructure (PKI)
- Certificates and chains of trust

Definition. A digital signature scheme consists of three algorithms
Kg, Sign, and Verify

- Key generation algorithm Kg, takes no input and outputs a

(random) public-verification-key/secret-signing key pair (PK,SK)  

- Signing algorithm Sign, takes input the secret key SK and a
message M, outputs “signature” σ←Sign(SK,M)

- Verification algorithm Verify, takes input the public key PK, a
message M, a signature σ, and outputs ACCEPT/REJECT

 Verify(PK,M,σ)=ACCEPT/REJECT

Crypto Tool: Digital Signatures

Digital Signature Security Goal: Unforgeability

σ←Sign(SK,M)

σ,M σ’,M’

ACCEPT/  
REJECT

Scheme satisfies unforgeability if it is unfeasible for
Adversary (who knows PK) to fool Bob into accepting M’ not
previously sent by Alice.

Verify(PK,σ’,M’)?

KgPK,SK

M

PK = (N, e) SK = (N, d) N = pq, ed = 1 mod ϕ(N)where

Sign((N, d), M) = Md mod N
Verify((N, e), M, σ) : σe = M mod N?

Messages & sigs
are in ℤ*N

“Plain” RSA with No Encoding Broken

e = 3 is common for fast verification; Assume e=3 below.

Sign((N, d), M) = Md mod N Verify((N,3), M, σ) : σ3 = M mod N?

“Plain” RSA Weaknesses Broken

Cube-M weakness: If M’ is a perfect cube then it is easy to forge.
Just take σ’=(M’)1/3:, i.e. the usual cube root of M’:

To forge a signature on message M’: Find number σ’ such that (σ’)3=M’ mod N

M=1 weakness: If M’=1 then it is easy to forge. Take σ’=1:

Assume e=3.

(Intuition: If cubing does not “wrap modulo N”, then it is easy to un-do.)

(σ’3)=13=1=M’ mod N

Example: To forge on M’=8, which is a perfect cube, set σ’=2.
(σ’)3=23=8=M’ mod N

Sign((N, d), M) = Md mod N Verify((N,3), M, σ) : σ3 = M mod N?

Further “Plain” RSA Weaknesses Broken

Malleability weakness: If σ is a valid signature for M, then it is easy to forge
a signature on 8M mod N.

Given (M,σ), compute forgery (M’,σ’) as

Then Verify((N,3),M’,σ’) checks:

M’= (8*M mod N), and σ’=(2*σ mod N)

(σ’)3=(2*σ mod N)3 = (23*σ3 mod N) = (23*M mod N) = 8M mod N

To forge a signature on message M’: Find number σ’ such that (σ’)3=M’ mod N

σ3=M mod N b/c σ is valid sig. on M

Assume e=3.

Sign((N, d), M) = Md mod N Verify((N,3), M, σ) : σ3 = M mod N?

Further “Plain” RSA Weaknesses Broken

Backwards signing weakness: Generate some valid signature by picking
σ’ first, and then defining M’=(σ’3 mod N)

To forge a signature on message M’: Find number σ’ such that (σ’)3=M’ mod N

Then Verify((N,3),M’,σ’) checks:

(σ’)3=(M’ mod N)

Sign((N, d), M) = Md mod N Verify((N,3), M, σ) : σ3 = M mod N?

Further “Plain” RSA Weaknesses Broken

To forge a signature on message M’: Find number σ’ such that (σ’)3=M’ mod N

Summary:
- Plain RSA Signatures allow several types of forgeries
- It was sometimes argued that these forgeries aren’t important: If M is english text,

then M’ is unlikely to be meaningful for these attacks
- But often they are damaging anyway

PK = (N, e) SK = (N, d) N = pq, ed = 1 mod ϕ(N)where

Sign((N, d), M) = encode(M)d mod N
Verify((N, e), M, σ) : σe = encode(M) mod N?

Messages & sigs
are in ℤ*N

RSA Signatures with Encoding

encode maps bit strings to numbers inℤ*N

Encoding must be chosen  
with extreme care.

 Broken

Encoding needs to address:
- Small M or M = perfect cube
- Malleability
- Backwards signing

RSA Signature Padding: PKCS #1 v1.5
Note: We already saw PKCS#1 v1.5 encryption padding. This is
signature padding. It is different.

Encoding needs to address:
- Perfect cubes
- Malleability
- Backwards signing

The high-order bits + digest means X is  
large and random-looking, rarely a cube.

Stopped by hash, ex: H(2*M)≠2*H(M)

Stopped by hash: given digest, hard to find M  
such that H(M)=digest.

Sign((N,d),M):
1. digest←hash_id||H(M) // m bytes long
2. pad←FF||FF||…||FF// n-m-3 ‘FF’ bytes
3. X←00||01||pad||00||digest
4. Output σ = Xd mod N

N: n-byte long integer.
H: Hash function.
hash_id: Magic number assigned to H

Ex: for H=SHA-256,  
hash_id = 3051…0440

Verify((N,3),M,σ):
1. X←(σ3 mod N)
2. Parse X➞aa||bb||Y||cc||digest
3. If aa≠00 or bb≠01 or cc≠00  

 or Y≠(FF)n-m-3  
 or digest≠hash_id||H(M):  
 Output REJECT

4. Else: Output ACCEPT

RSA Signature Padding: PKCS #1 v1.5
Note: We already saw PKCS#1 v1.5 encryption padding. This is
signature padding. It is different.

N: n-byte long integer.
H: Hash function.
hash_id: Magic number assigned to H

Introduces new weakness:
- Hash collision attacks: If H(M) = H(M’), then … 

Sign((N,d),M) = Sign((N,d),M’)  

- i.e., can reuse a signature for M as a signature for M’

Sign((N,d),M):
1. digest←hash_id||H(M) // m bytes long
2. pad←FF||FF||…||FF// n-m-3 ‘FF’ bytes
3. X←00||01||pad||00||digest
4. Output σ = Xd mod N

Ex: for H=SHA-256,  
hash_id = 3051…0440

Verify((N,3),M,σ):
1. X←(σ3 mod N)
2. Parse X➞aa||bb||Y||cc||digest
3. If aa≠00 or bb≠01 or cc≠00  

 or Y≠(FF)n-m-3  
 or digest≠hash_id||H(M):  
 Output REJECT

4. Else: Output ACCEPT

Now: A Buggy Implementation, with an Attack

- Padding check is often implemented incorrectly

- Enables forging of signatures on arbitrary messages

Real-world attacks against:
- OpenSSL (2006)
- Apple OSX (2006)
- Apache (2006)
- VMWare (2006)
- All the biggest Linux distros (2006)
- Firefox/Thunderbird (2013)

…
(at least 6 more in 2018 alone)

https://i.blackhat.com/USA-19/Wednesday/us-19-Chau-A-Decade-After-Bleichenbacher-06-RSA-Signature-Forgery-Still-Works-wp.pdf

https://i.blackhat.com/USA-19/Wednesday/us-19-Chau-A-Decade-After-Bleichenbacher-06-RSA-Signature-Forgery-Still-Works-wp.pdf

Buggy Verification in PKCS #1 v1.5 RSA Signatures

BuggyVerify((N,3),M,σ):
1. X←(σ3 mod N)
2. Parse X➞aa||bb||rest
3. If aa≠00 or bb≠01:  

 Output REJECT
4. Parse rest=(FF)p||00||digest||…,  

 where p is any positive number
5. If digest≠hash_id||H(M):  

 Output REJECT
6. Else: Output ACCEPT

Checks if rest starts with any
number of FF bytes followed by a 00
byte.

If so, it takes the next m bytes as digest.

X = 00 01 FF FF FF FF FF FF FF FF 00 <DIGEST>

X = 00 01 FF 00 <DIGEST> <IGNORED ………… BYTES>

Correct:

Buggy:

 Broken

One or more FF bytes

Sign((N,d),M):
1. digest←hash_id||H(M) // m bytes long
2. pad←FF||FF||…||FF// n-m-3 ‘FF’ bytes
3. X←00||01||pad||00||digest
4. Output σ = Xd mod N

Verify((N,3),M,σ):
1. X←(σ3 mod N)
2. Parse X➞aa||bb||Y||cc||digest
3. If aa≠00 or bb≠01 or cc≠00  

 or Y≠(FF)n-m-3  
 or digest≠hash_id||H(M):  
 Output REJECT

4. Else: Output ACCEPT

Attacking Buggy Verification

X = 00 01 FF 00 <DIGEST> <IGNORED ………… BYTES>Buggy:

 Broken

One or more FF bytes

To forge a signature on message M’: Find number σ’ such that

(σ’)3= 00 01 FF 00 H(M’) <JUNK> mod N

We’ll use one FF byte m bytes long n-m-4 bytes free
for attacker to pick

00 01 FF 00 H(M’) 00 …… 00 ≤ (σ’)3 ≤ 00 01 FF 00 H(M’) FF …… FF

Freedom to pick <JUNK> means we can take any σ’ such that:

Sufficient to find: Any perfect cube in the given range. Then apply perfect cube
attack.

Fun! (Assignment 2)

Steps in Attack

1. Pick M you want to forge a signature on.

2. Compute lower and upper bounds (numbers), using H(M).

3. Find a perfect cube x within allowed range.

4. Output cube root of x as forged signature σ.

Why do so many people make this error?

- I don’t really know for sure
- My guesses:

- Plugging in libraries for padding removal without checks.
- Specifically, ASN.1 parsing libraries are used to remove

padding. These are overkill and programmers do not fully
understand their behavior (but they also don’t want to do the
parsing by hand).

- Traditional unit testing is hard to apply to crypto.

- Note: Attack (and others) defeated by using large e=65537
- Example of defense-in-depth

Other RSA Padding Schemes: Full Domain Hash

N: n-byte long integer.
H: Hash fcn with m-byte output.
k = ceil((n-1)/m)

Ex: SHA-256, m=32

Sign((N,d),M):

1. X←00||H(1||M)||H(2||M)||…||H(k||M)
2. Output σ = Xd mod N

Verify((N,e),M,σ):
1. X←00||H(1||M)||H(2||M)||…||H(k||M)
2. Check if σe = X mod N

Bonus: Can prove security,
in a strong sense.

Other RSA Padding Schemes: PSS (In TLS 1.3)

- Somewhat complicated
- Randomized signing

Bonus: Can prove security,
in a strong sense. (CS284!)

RSA Signature Summary

- Plain RSA signatures are very broken
- PKCS#1 v.1.5 is widely used, in TLS, and fine if implemented

correctly
- Full-Domain Hash and PSS should be preferred
- Don’t roll your own RSA signatures!

Other Practical Signatures: DSA/ECDSA

- Based on ideas related to Diffie-Hellman key exchange
- Secure, but even more ripe for implementation errors

Public-Key Infrastructure (PKI)

- Main application for digital signatures are certificates, used in TLS
and other protocols

- Used to support a “public-key infrastructure”

Certificates (Basic Idea)
Certificate Authority (CA)

(PK*,SK*)

google.com

(PK1,SK1)
PK1

cert1
cert1=[PK1,”google.com",σ1]

uchicago.edu

(PK2,SK2)

PK2

cert2=[PK2,”uchicago.edu",σ2]

cert2
PK*

- Trusted CA “issues certs”, i.e. signs public keys of other orgs.

σ1=Sign(SK*,”google.com||PK1”)

- Certificates in general are a tuple (PK,metadata,σ)
- PK is public-key (may be for encryption, or for signature

verification)
- The metadata domain name, company info, sometimes

addresses, crypto protocols to use, expiration date, etc.
- σ is a signature on PK+metadata under CA’s signing key.

- Issuing a cert involves varying levels of due diligence by CA
- If CA is negligent, then entire system is not trustworthy!

Certificates (Basic Idea)

Authenticated Key Exchange with Certs

PK,SK

cert1=[PK,”google.com”,σ*]

(Pick random
AES key K)

ClientHello

K K

Dec(SK,C)

CA’s verification
key PK*

C = Enc(PK1,K)

PK* correct⇒ PK1 correct⇒ Person-in-the-Middle defeated!

Challenge: R

σ =Sign(PK,R)

Authenticated Key Exchange with Certs

PK,SK

cert=  
[PK’,”google.com”,?]

(Pick random
AES key K)

ClientHello

K K

K←Dec(SK,C)

CA’s verification
key PK*

ClientHello

cert=  
[PK,”google.com",σ]

Adversary must forge signature, or trick CA into issuing cert.

Authenticated Key Exchange Notes
- Authentication is “unilateral” or “one-sided”

- You are convinced you’re talking to google.com, but google.com
has no idea who they are talking to.

- However google.com knows they are continuing to talk to whoever
sent C

- You convince google.com of your identity using a password, not TLS.

PK1,SK1

cert1=[PK1,”google.com",σ1]

ClientHello

K K

Dec(SK1,C)

CA’s verification
key VK*

C = Enc(PK1,K)

AES-GCM(K,M)

Sent by same party.

The End

