Crypto
Part 3 of 3

CMSC 23200/33250, Winter 2020, Lecture 5

David Cash and Blase Ur

University of Chicago

Public-Key Encryption

Basic question: If two people are talking in the presence of an eavesdropper,
and they don't have pre-shared a key, is there any way they can send private
messages”?

Public-Key Encryption

Basic question: If two people are talking in the presence of an eavesdropper,
and they don't have pre-shared a key, is there any way they can send private
messages”?

1 RN
Diffie and Hellman Rivest, Shamir, Adleman Qooks, Ellis, Willlamson
in 1976: Yes! in 1978: Yes, differently! in 1969, at GCHQ:

, _ Yes, we know about both...
Turing Award, 2015, Turing Award, 2002, b . L
+ Million Dollars + NO money at on the back:

Public-Key Encryption

Basic question: If two people are talking in the presence of an eavesdropper,
and they don't have pre-shared a key, is there any way they can send private
messages”?

Message M <some bits> Receive M

Formally impossible (in some sense):
No difference between receiver and adversary.

Public-Key Encryption

Basic question: If two people are talking in the presence of an eavesdropper,
and they don't have pre-shared a key, is there any way they can send private
messages”?

<some bits>
Message M _—m)) R’+rand()

R+rand() “ <some bits>

—

<some bits>
—_—

Recelive M

\d

Doesn't know R,R’,
Can’t “try them all” (too many)

Public-Key Encryption

Definition. A public-key encryption scheme consists of three
algorithms Kg, Enc, and Dec

- Key generation algorithm Kg, takes no input and outputs a
(random) public-key/secret key pair (PK, SK)

- Encryption algorithm Enc, takes input the public key PK and the
plaintext M, outputs ciphertext C<Enc (PK, M)

- Decryption algorithm Dec, is such that
Dec(SK,Enc(PK,M))=M

Public-Key Encryption in Action

PK,SK<+— Kg |

PK
PK ————o— o SK
C = Enc(PK,M)
— o 0
C
PK=public key ‘ J

Known to everyone

SK=secret key “

known by Receiver only

All known Public-Key Encryption uses...

MATH

e
_

PiiS

Some RSA Math Called *2048-bit primes’

RSA setup '
o and g be large prime numbers (e.g. around 22048)
N = pg

N Is called the modulus

p=7, g=11 gives N=77
p=17 q=61 gives N=1037

Modular Arithmetic: Two sets

Zy=10,1,....,N—1}
VAR {1:ged(@i,N) =1} (Z% C Zy)

gcd = “greatest common divisor”

Examples:
7% ={1,2,3,4,5,6,7,8,9,10,11,12}

7* = {1,2,4,78,11,13,14)

Defintion: ¢(N) = \Z?\ﬂ H(13) =12 ¢H(15) =8

Modular Arithmetic

Definition

x mod N means the remainder when x is divided by N.

Ziks =1{1,2,4,7,8,11,13,14}
2X4 =8 mod 15 13x8 =14 mod 15

Theorem:

ZES IS “closed under multiplication modulo N”.

RSA “Trapdoor Function”

Lemma: Suppose e, d € Z;‘;(N) satisfy ed =1 mod ¢(N). Then for
any x € Zy we have that

(x)%=x=x mod N

Example: N=15, ¢o(N)=8,e=3,d=3

The satisfy conditioninlemma:ed =3-3=9=1 mod §

SO “powering by 3”7 always un-does itself.

(5°)) =5 =1953125=5 mod 15

Usually e and d are ditterent.

RSA “Trapdoor Function”

Easy given IV, e, x

Y
Hard given only N, e,y
But easy given P>{

= x*mod N

Finding “e-th roots modulo N” is hard.
Contrast is usual arithmetic, where finding roots is easy.

RSA “Trapdoor Function”
PK=(N,e) SK=(N,d) where N=pq, ed=1mod ¢(N)

Enc((NV,e), M) = M mod N

Messages and ciphertexts
are in Z*

Dec((N,d),C) = C*mod N i

Setting up RSA:

- Need two large random primes
- Have to pick e and then find d
- Don't worry about how exactly

Non-Integrity of the RSA Trapdoor Function

Enc((N,e), M) =M mod N=C

C \ C’
C'=2°C mod N d
v

(CY = (2°M9)¢ = 2M)*? = 2M mod N

Encryption with the RSA Trapdoor Function”

Enc((N,e), M) = M° mod N

Messages and ciphertexts
are in Z*

Dec((N,d),C) = C4*mod N ¥

- Several problems
- Encryption of 1 is 1

-e=3 is popular. Encryption of 2 is 8... (no wrapping mod N)
- RSA Trapdoor Function is deterministic

Solution: Pad input M using random (structured) bits.
- Serves purpose of padding and nonce/lV randomization

PKCS#1 v1.5 RSA Encryption

N: n-byte long integer.

0

Want to encrypt m-byte messages. / =
(N,e) Enc((N,e), M) :]
l l. pad < (n-m-3) random non-zero bytes.
2.X+00]|]02||pad||00]|M
3. Output X*mod N
M » Enc () »C
Dec((N,d), M):
l. X Cd mod N
2.Parse X = aal| |bb||rest
3. If aa#00 or bb#02 or 00¢rest:
(N, d) Output ERROR
l 4. Parse rest = pad||00]| |M
5. Return M
C > Dec() > M
(sl)\ Warning: Broken (sl)\

Bleichenbacher’'s Padding Oracle Attack (1998)

PK=(N, e)
\ N
“ System
ACCEPT or (e.g. webserver)
Want to REJECT
4— —_—
decrypt C SK=(N,d)
Infer something about

(C’)d mod N

Dec((N,d), M):

l. X Cd mod N
Info about X 2.Parse X = aal| |bb||rest

—g-3 . Tf aa#00 or bb#02 or 00«€rest:

o o Output ERROR
Originally needed millions of C’. 4. parse rest = pad||00] |M

Best currently about 10,000. 5. Return M

Better Padding: RSA-OAEP

RSA-OAEP [Bellare and Rogaway, ‘94|
orevents padding-oracle attacks with
petter padding using a hash function.

» n-k0-k1 . K1 - lee KO >

—— random bytes
@ i functions based on
w hash functions

Y .
Uses “Feistel Network” (1)
Y
. kO - KO

(Then apply RSA trapdoor function.)

Security of RSA Trapdoor Function Against Inversion

Inverting RSA Trapdoor Function Given N, e, y find x such that xe=y mod N
It we know d... Compute x = yd mod N
If we know @ (N)... Computed = e-1 mod @ (N)
If we know p, g... Compute @ (N)=(p-1) (g-1)
T Learning p and g from N is
But if we only know N... called the factoring problem.

- In principle one may invert RSA without factoring N, but it is the
only approach known.

Naive Factoring Algorithm

- Given input N=901, what are p,g”

NaiveFactor (N) :

l. For i=2..sqrt(N):
If i divides N:
Output p=i, g=N/1i

- Runtime is sgrt (N) <N
- But sgrt (N) is still huge (e.g. sqrt (22048)=21024)

Factoring Algorithms

- If we can factor N, we can find d and break any version of RSA.

Algorithm Time to Factor N

Naive: Try dividing by 1,2,3,... O(N~) = O(e> "))

O(e°)
¢ = (In N)V*(In1n N)?

O(e®)

Number Field Sieve ¢ = 1.9(In N)1/3(ln In N)2/3

- Total break requires ¢ = O(Inln N)

Factoring Records

- Challenges posted publicly by RSA Laboratories

Bit-length of N Year

400 1993
 ws | 1s
s | 199
"""""""""""""""""""""" 8 | 200
"""""""""""""""""""""""""" 5 | 2019

- Recommended bit-length today: 2048
- Note that fast algorithms force such a large key.
- 512-bit N defeats naive factoring

Public-Key Encryption in Practice: Hybrid Encryption

- RSA runs reasonably fast but is orders of magnitude slower than
symmetric encryption with AES.
- My laptop...
- Can encrypt 800 MB per second using AES-CBC
- Can only evaluate RSA 1000 times per second

Solution: Use public-key encryption to send a 16-byte key K for
AES. Then encrypt rest of traffic using authenticated encryption.

- Called “hybrid encryption”

Key Exchange and Hybrid Encryption

(Kg, Enc, Dec) Is a public-key encryption scheme.

Goal: Establish secret key K to use with Authenticated Encryption.

Maybe be long-term key or
‘ J “ephemeral” key pair, used

only once.

- j
. “ PK,SK «— Kg
Pick random

AES key K PK

C = Enc(PK,f)

K is the K+<Dec(SK,C)
message i

K

Key Exchange and Hybrid Encryption

Key Exchange

S ———————————_—

AES-GCM (K, M)
— e

AES-GCM (K, Mz)
_—m-—m———
AES-GCM(K,Ms)
-—

- After up-front cost, bulk encryption is very cheap
- TLS/SSH (covered later) Terminology:
- “Handshake”™ = key exchange
- "Record protocol™ = symmetric encryption phase

Key Exchange Going Forward: Elliptic Curve Diffie-Hellman

- Totally different math from RSA
- Advantage: Bandwidth and computation (due to higher security)
- 256 bit vs 2048-bit messages.

N

. . L LI
\4 M .' 1".) b : ‘‘‘‘‘ S L ley
50 100 150 200 250

- Will be covered when we do secure messaging!

Public-Key Encryption/Key Exchange Wrap-Up

- RSA-OAEP and Dittie-Hellman (either mod a prime or in an

elll
- Elll

Huge quantum computers will break:
- RSA (any padding)
- Diffie-Hellman

Nt

O1

ic curve) are unbroken and run fine in TLS/SSH/etc.
ic-Curve Diffie-Hellman is preferred choice going forward.

Shor’s algorithm, 1994

Peter Shor

- First gen quantum computers will be far from this large

- "Post-quantum™ crypto = crypto not known to be broken by
guantum computers (i.e. not RSA or DH)

- On-going research on post-quantum cryptography from hard
problems on lattices, with first beta deployments in recent years

Key Exchange with a Person-in-the-Middle

Adversary may silently sit between parties and modity messages.

Parties agree on different keys, both known to adversary...

Key Exchange with a Person-in-the-Middle

AES-GCM(K,M;) .) AES-GCM(K' ,M;)
—_— —_—

AES-GCM (K, M) AES-GCM (K’ ,M;)

Connection is totally transparent to adversary,.
Translation is invisible to parties.

® © ® privacyerror X +
& > C O A NotSecure | hitps://md5.badssl.com * ® o6 008 @

Your connection is not private

Attackers might be trying to steal your information from md5.badssl.com (for example, passwords,
messages, or credit cards). Learn more
NET::ERR_CERT_AUTHORITY_INVALID

[:] Help improve Safe Browsing by sending some system information and page content to Google. Privacy policy

ADVANCED BACK TO SAFETY

Next up: Tool for Stopping the Person-in-the-Middle

- Digital Signatures

Later during networking week:
- Public-Key Infrastructure (PKI)
- Certificates and chains of trust

Crypto Tool: Digital Signatures

Definition. A digital signature scheme consists of three algorithms
Kg, Sign, and Verify

- Key generation algorithm Kqg, takes no input and outputs a
(random) public-verification-key/secret-signing key pair (VK, SK)

- Signing algorithm Sign, takes input the secret key SK and a
message M, outputs “signature” o+—Sign(SK,M)

- Verification algorithm Verify, takes input the public key VK, a
message M, a signature g, and outputs ACCEPT/REJECT
Verify(VK,M,O0)=ACCEPT/REJECT

Digital Signature Security Goal: Unforgeability

VK, SK +— Kg |

n_, o,M oM Verify (VK,o' ,M’)?
O"—Sign(SK,M)“ “ ACCEPT/
REJECT

Scheme satisfies unforgeability if it is unfeasible for
Adversary (who knows VK) to fool Bob into accepting M’ not
previously sent by Alice.

“Plain” RSA with No Encoding 8 sroen &
VK =(N,e) SK=(N,d) where N=pgq, ed=1mod ¢(N)

Messages & sigs

Sign((N, d), M) = M9 mod N are in 7%
N
Verity((NV, e), M, 6) : 6° = Mmod N?!

e = 3 is common for fast verification: Assume e=3 below.

“Plain” RSA Weaknesses 5 sroven &

Assume e=3.

Sign((N,d),M) = M‘mod N Verify((N,3),M,0) : 6° = Mmod N?

To forge a signature on message M’ : Find number o’ such that (o’)3=M’ mod N

M=1 weakness: |[f M’ =1 then it is easy to forge. Take o’ =1:

(0’3)=13=1=M' mod N J

Cube-M weakness: If M’ is a perfect cube then it is easy to forge.
Justtake o’'=(M")1/3; i.e. the usual cube root of M":

Example: To forge on M’ =8, which is a perfect cube, set 0’ =2.

(0’)3=23=8=M’ mod N /

(Intuition: It cubing does not “wrap modulo N”, then it is easy to un-do.)

Further “Plain” RSA Weaknesses A sroken &)

Sign((N,d),M) = M‘mod N Verify((N,3),M,0) : 6° = Mmod N?

To forge a signature on message M’ : Find number o’ such that (o’)3=M’ mod N

Malleability weakness: If g is a valid signature for M, then it is easy to forge
a signature on 8M mod N.

Given (M, 0), compute forgery (M’ ,0’) as

M'= (8*M mod N),and 0’'=(2*0 mod N)
Thenverify((N,3),M’,0’) checks:

(0')3=(2*0 mod N)3 = (23*¥03 mod N) = (23*M mod N) = 8M mod N

N v

03=M mod N b/c o is valid sig. on M

Further “Plain” RSA Weaknesses A sroken &)

Sign((N,d),M) = M‘mod N Verify((N,3),M,0) : 6° = Mmod N?

To forge a signature on message M’ : Find number o’ such that (o’)3=M’ mod N

Backwards signing weakness: (Generate some valid signature by picking
o’ first, and then defining M’'=(0’3 mod N)

Then verify((N,3),M’,0’) checks:

(0')3=(M’" mod N) / P

0

Further “Plain” RSA Weaknesses A sroken &

Sign((N,d),M) = M‘mod N Verify((N,3),M,0) : 6° = Mmod N?

To forge a signature on message M’ : Find number o’ such that (o’)3=M’ mod N

summary:

- Plain RSA Signatures allow several types of forgeries

- It was sometimes argued that these forgeries aren’t important: If M is english text,
then M’ is unlikely to be meaningful for these attacks

- But often they are damaging anyway

RSA Signatures with Encoding
VK =(N,e) SK=(N,d) where N=pq, ed=1mod ¢(N)

Messages & sigs

Sign((N, d), M) = encode(M ¥ mod N N
N
Verity((V, e), M, o) : 6° = encode(M) mod N?

encode maps bit strings to numbers in Z;‘\j

Encoding needs to address:

Encoding must be chosen
- Small M or M = perfect cube B Sy

- Malleability &-})3 Broken &\
- Backwards signing

RSA Signature Padding: PKCS #1 v1.5

Note: We already saw PKCS#1 v1.5 encryption padding. This is
signature padding. It is different.

N: n-byte long integer. Ex: for H=SHA-256,

H: Hash function. | — hash_id = 3051..0440
hash id: Magic number assigned to H

Sign((N,d),M): Verify((N,3),M,0):

1. digest+hash id||H(M) // m bytes long 1. X< (03 mod N)

2. pad<FF| |FF| |..| |FF// g—m—3 ‘FF' bytes , o .o x—aa| |bb| |¥||cc||digest
3. X<00||01][pad||00]|[digest 3. If aa#00 or bb#01 or cc=00

4. Output 0 = Xd mod N or Y#(FF)n-m-3

or digest#hash id||H(M):
Output REJECT

, 4, Else: Output ACCEPT
Encoding needs to address:

- Perfect cubes > The high-order bits + digest means X is

- Malleability — large and random-looking, rarely a cube.

—> .
- Backwards signing \ Stopped by hash, ex: H(2*M)#2*H (M)
Stopped by hash: given digest, hard to find M

such that H(M)=digest.

RSA Signature Padding: PKCS #1 v1.5

Note: We already saw PKCS#1 v1.5 encryption padding. This is
signature padding. It is different.

N: n-byte long integer. Ex: for H=SHA-256,

H: Hash function. | — hash_id = 3051..0440
hash id: Magic number assigned to H

Sign((N,d),M): Verify ((N,3),M,0):

1. digest<hash_id| [H(M) // m bytes long X (03 mod N)

2. pad<FF| |FF| |..| |FF// r.1—m—3 ‘FF' bytes , o oo x—aa| |bb||Y||cc||digest
3. X<00[[01][pad||00] |digest 3. If aa#00 or bb=01 or cc#00

4, Output 0 = Xd mod N or Y#(FF)n-n-3

or digest#hash id||H(M):
Output REJECT
4., Else: Output ACCEPT

Introduces new weakness:

- Hash collision attacks: fH(M) = H(M'), then ...

Sign((N,d),M) = Sign((N,d),M")

- l.e., can reuse a signature for M as a signature for M’

Now: A Buggy Implementation, with an Attack

- Padding check is often implemented incorrectly

- Enables forging of signatures on arbitrary messages

Real-world attacks against:
- OpenSSL (2006)
- Apple OSX (2000)
- Apache (2000)
- VMWare (2006)
- All the biggest Linux distros (2006)
- Firefox/Thunderbird (2013)

(at least 6 more in 2018 alone)

https://i.blackhat.com/USA-19/Wednesday/us-19-Chau-A-Decade-After-Bleichenbacher-06-RS A-Signature-Forgery-Still-Works-wp.pdf

https://i.blackhat.com/USA-19/Wednesday/us-19-Chau-A-Decade-After-Bleichenbacher-06-RSA-Signature-Forgery-Still-Works-wp.pdf

@\ Broken (\61,))

Buggy Verification in PKCS #1 v1.5 RSA Signatures

Sign((N,d),M): Verify((N,3),M,0):

1. digest+hash id||H(M) // m bytes long
2. pad«<FF| |FF||..| |FF// n-m-3 ‘FF’ bytes
3. X+00||01||pad||00]| |digest

4, Output 0 = Xd mod N

l. X< (03 mod N)
2. Parse X—aa| |bb| |Y||cc||digest
3. If aa#00 or bb#01 or cc#00

Oor Y#(FF)n-m-3

or digest#hash id||H(M):

BuggyVerifv((N,3),M,O0): Output REJECT

1.
2.
3.

4, Else: ACCEPT
X (0% mod N) se: Output ACC

Parse X—aa| |bb| |rest
If aa#00 or bb=01:

Output REJECT Checks if rest starts with any

Parse rest=(FF)e||00||digest]].., number of FF bytes followed by a 00
where p is any positive number byte.
. If digest#hash id||H(M):

Output REJECT If SO, it takes the next m bytes as digest.

. Else: Output ACCEPT

Correct: X 00 01 FF FF FF FF FF FF FF FF 00 <DIGEST>

Buggy: X 00 01 FF 00 <DIGEST> <IGNORED ... BYTES>

One or more FF bytes

>

\'9\ Broken (\%
Attacking Buggy Verification

One or more FF bytes

l

Buggy: X = 00 01 FF 00 <DIGEST> <IGNORED ... BYTES>

To forge a signature on message M’ : Find number o’ such that

(0’)3= 00 01 FF 00 H(M’) <JUNK> mod N

T \ ™~

1 \ ~
We'll use one FF byte m bytes long n-m-4 bytes free

for attacker to pick

Freedom to pick <JUNK> means we can take any o’ such that:

00 01 FF 00 H(M’) 00 ... 00 < (0’')3< 00 01 FF 00 H(M') FF ... FF

Sufficient to find: Any perfect cube in the given range. Then apply perfect cube
attack.

Fun! (Assignment 2)

Steps in Attack

1. Pick M you want to forge on
2. Compute lower and upper bounds (numbers), using H(M) .
3. Find a perfect cube x within allowed range

4. Output cube root of x as forged signature o.

Attack Summary

- When padding check allows variable number of FF bytes, forging

IS easy

- Only requires a simple search for a perfect cube in a given range

- Why did so many make this error?

- | don't really know for sure
- My guesses:

- Plugging in libraries tor padd

iIng removal without checks.

- Specifically, ASN.1 parsing |i

oraries are used to remove

padding. These are overkill and programmers do not fully
understand their behavior (but they also don’t want to do the

parsing by hand).

- Traditional unit testing is hard to apply to crypto.

- Attack defeated by using large e

=65537

Other RSA Padding Schemes: Full Domain Hash

N: n-byte long integer.
H: Hash fcn with m-byte output Ex: SHA-256, m=32
k = ceil((n-1)/m)

Sign((N,d),M):

1. X<00| [H(L[[M)[[|B(2][M)[].]|[H(K][M)
2. Output 0 = Xd mod N

Verify((N,e),M,0):

1. X<00| [H(1||M)||H(2][M)][] [BH(K][M)
2. Check if 0e = X mod N

Bonus: Can prove security,
INn a strong sense.

Other RSA Padding Schemes: PSS (In TLS 1.3)

- Somewhat complicated
- Randomized signing

M

Bonus: Can prove security,
in a strong sense. (CS284!) @

M' = | 8 0x00 bytes| mHash salt

DB = PS | Ox01 salt @

. 4 . 4
EM = maskedDB H

TF

RSA Sighature Summary

- Plain RSA signatures are very broken

- PKCS#1 v.1.5 is widely used, in TLS, and fine if implemented
correctly

- Full-Domain Hash and PSS should be preferred

- Don’t roll your own RSA signatures!

Other Practical Signatures: DSA/ECDSA

- Based on ideas related to Diffie-Hellman key exchange

- Secure, but ripe for implementation errors

Hackers obtain PS3 private
cryptography key due to epic
programming fail? (update)

@ 2

Sony’s ECDSA code

int @tRondomN\mber()

return Y. // chosen by fair dice roll.
/| Quaranteed to be random.

Bonus: New Signature Vulnerability Yesterday!

https://blog.lessonslearned.org/chain-of-fools/
https://media.defense.ecov/2020/Jan/14/2002234275/-1/-1/0/CSA-WINDOWS-10-CRYPT-L.IB-20190114 .PDF

National Security Agency @ Cybersecurity Advisory

Patch Critical Cryptographic Vulnerability in Microsoft Windows
Clients and Servers

Summary /|

NSA has discovered a critical vulnerability (CVE-2020-0601) affecting Micre¢ F Y)
The certificate validation vulnerability allows an attacker to undermine how Si t O
enable remote code execution. The vulnerability affects Windows 10 and Parent ighaiure '

applications that rely on Windows for trust functionality. Exploitation of the \ Any quesﬁons or comments.
network connections and deliver executable code while appearing as legitin

validation of trust may be impacted include:

o HTTPS connections
o Signed files and emails
o Signed executable code launched as user-mode processes

- Details not known yet, but it looks like Windows was not checking
crucial parameters before doing signature verification

- Windows was accepting malicious code as authentic.

https://blog.lessonslearned.org/chain-of-fools/
https://media.defense.gov/2020/Jan/14/2002234275/-1/-1/0/CSA-WINDOWS-10-CRYPT-LIB-20190114.PDF

The Enad

