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Public-Key Encryption

Basic question: If two people are talking in the presence of an eavesdropper, 
and they don’t have pre-shared a key, is there any way they can send private 
messages?



Public-Key Encryption

Basic question: If two people are talking in the presence of an eavesdropper, 
and they don’t have pre-shared a key, is there any way they can send private 
messages?

Rivest, Shamir, Adleman 
in 1978: Yes, differently!
Turing Award, 2002, 
+ no money

Diffie and Hellman 
in 1976: Yes!

Turing Award, 2015,  
+ Million Dollars

Cocks, Ellis, Williamson 
in 1969, at GCHQ: 
Yes, we know about both…

Pat on the back?



Public-Key Encryption

Basic question: If two people are talking in the presence of an eavesdropper, 
and they don’t have pre-shared a key, is there any way they can send private 
messages?

<some bits>

M?

Message M Receive M

Formally impossible (in some sense): 
No difference between receiver and adversary.



Public-Key Encryption

Basic question: If two people are talking in the presence of an eavesdropper, 
and they don’t have pre-shared a key, is there any way they can send private 
messages?

R←rand()

<some bits>

Doesn’t know R,R’,
Can’t “try them all” (too many)

<some bits>

<some bits>

R’←rand()

Receive M

Message M

M?



Public-Key Encryption

Definition. A public-key encryption scheme consists of three 
algorithms Kg, Enc, and Dec  
 
- Key generation algorithm Kg, takes no input and outputs a 

(random) public-key/secret key pair (PK,SK)  

- Encryption algorithm Enc, takes input the public key PK and the 
plaintext M, outputs ciphertext C←Enc(PK,M)  

- Decryption algorithm Dec, is such that 

 Dec(SK,Enc(PK,M))=M 



Public-Key Encryption in Action

PK=public key 
known to everyone

SK=secret key 
known by Receiver only

KgPK,SK

PK

PK

SK
M C = Enc(PK,M) M

C

PK



All known Public-Key Encryption uses…

MATH

N = pq



Some RSA Math

RSA setup
p and q be large prime numbers (e.g. around 22048) 
N = pq 
N is called the modulus

Called “2048-bit primes”

p=7, q=11 gives N=77 
p=17 q=61 gives N=1037



Modular Arithmetic: Two sets

ℤN = {0,1,…, N − 1}

ℤ*N = {i : gcd(i, N) = 1} (ℤ*N ⊊ ℤN)

gcd = “greatest common divisor”

Examples:
ℤ*13 = {1,2,3,4,5,6,7,8,9,10,11,12}

ℤ*15 = {1,2,4,7,8,11,13,14}

Defintion: ϕ(N) = |ℤ*N | ϕ(13) = 12 ϕ(15) = 8



Modular Arithmetic

Definition

x mod N means the remainder when x is divided by N.

ℤ*15 = {1,2,4,7,8,11,13,14}

2 × 4 = 8 mod 15 13 × 8 = 14 mod 15

Theorem:
ℤ*N is “closed under multiplication modulo N”.



RSA “Trapdoor Function”

Lemma: Suppose e, d ∈ ℤ*ϕ(N) satisfy ed = 1 mod ϕ(N). Then for
any x ∈ ℤN we have that 

(xe)d = xed = x mod N

N = 15, ϕ(N) = 8, e = 3, d = 3Example:

ed = 3 ⋅ 3 = 9 = 1 mod 8The satisfy condition in lemma:

(53)3 = 59 = 1953125 = 5 mod 15

So “powering by 3” always un-does itself.

Usually e and d are different.



RSA “Trapdoor Function”

x mod N y = xe mod N

Easy given N, e, x

Hard given only N, e, y

Finding “e-th roots modulo N” is hard. 
Contrast is usual arithmetic, where finding roots is easy.

But easy given p, q



RSA “Trapdoor Function”
PK = (N, e) SK = (N, d) N = pq, ed = 1 mod ϕ(N)where

Enc((N, e), M) = Me mod N

Dec((N, d), C) = Cd mod N
Messages and ciphertexts 
are in ℤ*N

Setting up RSA: 
- Need two large random primes 
- Have to pick e and then find d 
- Don’t worry about how exactly



Non-Integrity of the RSA Trapdoor Function

Enc((N, e), M) = Me mod N = C

C

C′� = 2eC mod N

C′�

(C′�)d = (2eMe)d = (2M)ed = 2M mod N



Encryption with the RSA Trapdoor Function?

- Several problems 
- Encryption of 1 is 1 
- e=3 is popular. Encryption of 2 is 8… (no wrapping mod N) 
- RSA Trapdoor Function is deterministic

Solution: Pad input M using random (structured) bits. 
- Serves purpose of padding and nonce/IV randomization

Enc((N, e), M) = Me mod N

Dec((N, d), C) = Cd mod N
Messages and ciphertexts 
are in ℤ*N



PKCS#1 v1.5 RSA Encryption

Enc()

Dec()

M

(N,e)

C

C M

(N,d)

Enc((N,e),M):

1. pad ← (n-m-3) random non-zero bytes.
2. X←00||02||pad||00||M
3. Output X mod N

N: n-byte long integer. 
Want to encrypt m-byte messages.

e

Dec((N,d),M):
1. X← Cd mod N
2. Parse X = aa||bb||rest
3. If aa≠00 or bb≠02 or 00∉rest:  

   Output ERROR
4. Parse rest = pad||00||M
5. Return M

Warning: Broken



Bleichenbacher’s Padding Oracle Attack (1998)

C’

ACCEPT or  
REJECT

System
(e.g.  webserver)
SK=(N,d)

PK=(N,e)

Dec((N,d),M):
1. X← Cd mod N
2. Parse X = aa||bb||rest
3. If aa≠00 or bb≠02 or 00∉rest:  

   Output ERROR
4. Parse rest = pad||00||M
5. Return M

Infer something about 
(C’)d mod N

Want to 
decrypt C

Info about X

Originally needed millions of C’. 
Best currently about 10,000.



Better Padding: RSA-OAEP

RSA-OAEP [Bellare and Rogaway, ‘94] 
prevents padding-oracle attacks with 
better padding using a hash function.

(Then apply RSA trapdoor function.)

random bytes

functions based on  
hash functions 

Uses “Feistel Network” (!)



Security of RSA Trapdoor Function Against Inversion
Inverting RSA Trapdoor Function  Given N,e,y find x such that xe=y mod N

If we know d… Compute x = yd mod N

If we know φ(N)… Compute d = e-1 mod φ(N)

If we know p,q… Compute φ(N)=(p-1)(q-1)

But if we only know N…
Learning p and q from N is 
called the factoring problem.

- In principle one may invert RSA without factoring N, but it is the 
only approach known.



Naive Factoring Algorithm

- Given input N=901, what are p,q?

NaiveFactor(N):

1. For i=2…sqrt(N):
If i divides N:
Output p=i, q=N/i

- Runtime is sqrt(N)≪N
- But sqrt(N) is still huge (e.g. sqrt(22048)=21024)



Factoring Algorithms

- If we can factor N, we can find d and break any version of RSA.

Algorithm Time to Factor N

Naive: Try dividing by 1,2,3,…

Quadratic Sieve

Number Field Sieve

O(N.5) = O(e.5 ln(N))

O(ec)

O(ec)

c = (ln N )1/2(ln ln N )1/2

c = 1.9(ln N )1/3(ln ln N )2/3

c = O(ln ln N )- Total break requires 



Bit-length of N Year

400 1993

478 1994

515 1999

768 2009

795 2019

Factoring Records

- Challenges posted publicly by RSA Laboratories

- Recommended bit-length today: 2048 
- Note that fast algorithms force such a large key.  

- 512-bit N defeats naive factoring



Public-Key Encryption in Practice: Hybrid Encryption

- RSA runs reasonably fast but is orders of magnitude slower than 
symmetric encryption with AES. 
- My laptop…  

- Can encrypt 800 MB per second using AES-CBC 
- Can only evaluate RSA 1000 times per second

Solution: Use public-key encryption to send a 16-byte key K for 
AES. Then encrypt rest of traffic using authenticated encryption.

- Called “hybrid encryption”



Key Exchange and Hybrid Encryption

Goal: Establish secret key K to use with Authenticated Encryption.

KgPK,SK

PK

(Kg, Enc, Dec) is a public-key encryption scheme.

Pick random 
AES key K

C = Enc(PK,K)

K is the 
message

K K

K←Dec(SK,C)

Maybe be long-term key or  
“ephemeral” key pair, used 
only once.



Key Exchange and Hybrid Encryption

Key Exchange

AES-GCM(K,M1)

AES-GCM(K,M2)

AES-GCM(K,M3)

…

- After up-front cost, bulk encryption is very cheap 
- TLS/SSH (covered later) Terminology: 

- “Handshake” = key exchange 
- “Record protocol” = symmetric encryption phase



Key Exchange Going Forward: Elliptic Curve Diffie-Hellman

- Totally different math from RSA 
- Advantage: Bandwidth and computation (due to higher security) 

- 256 bit vs 2048-bit messages.

- Will be covered when we do secure messaging!



Public-Key Encryption/Key Exchange Wrap-Up

- RSA-OAEP and Diffie-Hellman (either mod a prime or in an 
elliptic curve) are unbroken and run fine in TLS/SSH/etc. 

- Elliptic-Curve Diffie-Hellman is preferred choice going forward.

Huge quantum computers will break:
- RSA (any padding) 
- Diffie-Hellman

- First gen quantum computers will be far from this large 
- “Post-quantum” crypto = crypto not known to be broken by 

quantum computers (i.e. not RSA or DH) 
- On-going research on post-quantum cryptography from hard 

problems on lattices, with first beta deployments in recent years

Shor’s algorithm, 1994

Peter Shor



Key Exchange with a Person-in-the-Middle

PK

C C’

PK’

K K’ K’K

Adversary may silently sit between parties and modify messages. 

Parties agree on different keys, both known to adversary… 



Key Exchange with a Person-in-the-Middle

AES-GCM(K,M1)

AES-GCM(K’,M2)

K K’

AES-GCM(K’,M1)

AES-GCM(K,M2)

Connection is totally transparent to adversary. 
Translation is invisible to parties.





Next up: Tool for Stopping the Person-in-the-Middle

- Digital Signatures 

Later during networking week: 
- Public-Key Infrastructure (PKI) 
- Certificates and chains of trust



Definition. A digital signature scheme consists of three algorithms 
Kg, Sign, and Verify  
 
- Key generation algorithm Kg, takes no input and outputs a 

(random) public-verification-key/secret-signing key pair (VK,SK)  

- Signing algorithm Sign, takes input the secret key SK and a 
message M, outputs “signature” σ←Sign(SK,M)  

- Verification algorithm Verify, takes input the public key VK, a 
message M, a signature σ, and outputs ACCEPT/REJECT 

 Verify(VK,M,σ)=ACCEPT/REJECT

Crypto Tool: Digital Signatures



Digital Signature Security Goal: Unforgeability

σ←Sign(SK,M)

σ,M σ’,M’

ACCEPT/  
REJECT

Scheme satisfies unforgeability if it is unfeasible for 
Adversary (who knows VK) to fool Bob into accepting M’ not 
previously sent by Alice.

Verify(VK,σ’,M’)?

KgVK,SK

M



VK = (N, e) SK = (N, d) N = pq, ed = 1 mod ϕ(N)where

Sign((N, d), M) = Md mod N
Verify((N, e), M, σ) : σe = M mod N?

Messages & sigs 
are in ℤ*N

“Plain” RSA with No Encoding  Broken

e = 3 is common for fast verification; Assume e=3 below.



Sign((N, d), M) = Md mod N Verify((N,3), M, σ) : σ3 = M mod N?

“Plain” RSA Weaknesses  Broken

Cube-M weakness: If M’ is a perfect cube then it is easy to forge.  
Just take  σ’=(M’)1/3:, i.e. the usual cube root of M’:

To forge a signature on message M’: Find number σ’ such that (σ’)3=M’ mod N

M=1 weakness: If M’=1 then it is easy to forge. Take σ’=1: 
                                          

Assume e=3.

(Intuition: If cubing does not “wrap modulo N”, then it is easy to un-do.)

(σ’3)=13=1=M’ mod N

Example: To forge on M’=8, which is a perfect cube, set σ’=2.
(σ’)3=23=8=M’ mod N



Sign((N, d), M) = Md mod N Verify((N,3), M, σ) : σ3 = M mod N?

Further “Plain” RSA Weaknesses  Broken

Malleability weakness: If σ is a valid signature for M, then it is easy to forge 
a signature on 8M mod N.

Given (M,σ), compute forgery (M’,σ’) as

Then Verify((N,3),M’,σ’) checks: 

M’= (8*M mod N), and σ’=(2*σ mod N)

(σ’)3=(2*σ mod N)3 = (23*σ3 mod N) = (23*M mod N) = 8M mod N

To forge a signature on message M’: Find number σ’ such that (σ’)3=M’ mod N

σ3=M mod N b/c σ is valid sig. on M



Sign((N, d), M) = Md mod N Verify((N,3), M, σ) : σ3 = M mod N?

Further “Plain” RSA Weaknesses  Broken

Backwards signing weakness: Generate some valid signature by picking 
σ’ first, and then defining M’=(σ’3 mod N)

To forge a signature on message M’: Find number σ’ such that (σ’)3=M’ mod N

Then Verify((N,3),M’,σ’) checks: 

(σ’)3=(M’ mod N)



Sign((N, d), M) = Md mod N Verify((N,3), M, σ) : σ3 = M mod N?

Further “Plain” RSA Weaknesses  Broken

To forge a signature on message M’: Find number σ’ such that (σ’)3=M’ mod N

Summary: 
- Plain RSA Signatures allow several types of forgeries 
- It was sometimes argued that these forgeries aren’t important: If M is english text, 

then M’ is unlikely to be meaningful for these attacks 
- But often they are damaging anyway



VK = (N, e) SK = (N, d) N = pq, ed = 1 mod ϕ(N)where

Sign((N, d), M) = encode(M)d mod N
Verify((N, e), M, σ) : σe = encode(M) mod N?

Messages & sigs 
are in ℤ*N

RSA Signatures with Encoding

encode maps bit strings to numbers inℤ*N

Encoding must be chosen  
with extreme care.

 Broken

Encoding needs to address: 
- Small M or M = perfect cube 
- Malleability 
- Backwards signing



RSA Signature Padding: PKCS #1 v1.5
Note: We already saw PKCS#1 v1.5 encryption padding. This is 
signature padding. It is different.

Encoding needs to address: 
- Perfect cubes 
- Malleability 
- Backwards signing

The high-order bits + digest means X is  
large  and random-looking, rarely a cube.

Stopped by hash, ex: H(2*M)≠2*H(M)

Stopped by hash: given digest, hard to find M  
such that H(M)=digest.

Sign((N,d),M):
1. digest←hash_id||H(M) // m bytes long
2. pad←FF||FF||…||FF// n-m-3 ‘FF’ bytes
3. X←00||01||pad||00||digest
4. Output σ = Xd mod N

N: n-byte long integer. 
H:  Hash function. 
hash_id: Magic number assigned to H

Ex: for H=SHA-256,  
hash_id = 3051…0440

Verify((N,3),M,σ):
1. X←(σ3 mod N)
2. Parse X➞aa||bb||Y||cc||digest
3. If aa≠00 or bb≠01 or cc≠00  

 or Y≠(FF)n-m-3  
 or digest≠hash_id||H(M):  
   Output REJECT

4. Else: Output ACCEPT



RSA Signature Padding: PKCS #1 v1.5
Note: We already saw PKCS#1 v1.5 encryption padding. This is 
signature padding. It is different.

N: n-byte long integer. 
H:  Hash function. 
hash_id: Magic number assigned to H

Introduces new weakness: 
- Hash collision attacks: If H(M) = H(M’), then … 

Sign((N,d),M) = Sign((N,d),M’)  

- i.e., can reuse a signature for M as a signature for M’

Sign((N,d),M):
1. digest←hash_id||H(M) // m bytes long
2. pad←FF||FF||…||FF// n-m-3 ‘FF’ bytes
3. X←00||01||pad||00||digest
4. Output σ = Xd mod N

Ex: for H=SHA-256,  
hash_id = 3051…0440

Verify((N,3),M,σ):
1. X←(σ3 mod N)
2. Parse X➞aa||bb||Y||cc||digest
3. If aa≠00 or bb≠01 or cc≠00  

 or Y≠(FF)n-m-3  
 or digest≠hash_id||H(M):  
   Output REJECT

4. Else: Output ACCEPT



Now: A Buggy Implementation, with an Attack

- Padding check is often implemented incorrectly 

- Enables forging of signatures on arbitrary messages

Real-world attacks against: 
- OpenSSL (2006) 
- Apple OSX (2006) 
- Apache (2006) 
- VMWare (2006) 
- All the biggest Linux distros (2006) 
- Firefox/Thunderbird (2013)  

… 
(at least 6 more in 2018 alone)

https://i.blackhat.com/USA-19/Wednesday/us-19-Chau-A-Decade-After-Bleichenbacher-06-RSA-Signature-Forgery-Still-Works-wp.pdf

https://i.blackhat.com/USA-19/Wednesday/us-19-Chau-A-Decade-After-Bleichenbacher-06-RSA-Signature-Forgery-Still-Works-wp.pdf


Buggy Verification in  PKCS #1 v1.5 RSA Signatures

BuggyVerify((N,3),M,σ):
1. X←(σ3 mod N)
2. Parse X➞aa||bb||rest
3. If aa≠00 or bb≠01:  

   Output REJECT
4. Parse rest=(FF)p||00||digest||…,  

 where p is any positive number
5. If digest≠hash_id||H(M):  

   Output REJECT
6. Else: Output ACCEPT

Checks if rest starts with any 
number of FF bytes followed by a 00  
byte.  
 
If so, it takes the next m bytes as digest.

X = 00 01 FF FF FF FF FF FF FF FF 00 <DIGEST>

X = 00 01 FF 00 <DIGEST> <IGNORED ………… BYTES>

Correct:

Buggy:

 Broken

One or more FF bytes

Sign((N,d),M):
1. digest←hash_id||H(M) // m bytes long
2. pad←FF||FF||…||FF// n-m-3 ‘FF’ bytes
3. X←00||01||pad||00||digest
4. Output σ = Xd mod N

Verify((N,3),M,σ):
1. X←(σ3 mod N)
2. Parse X➞aa||bb||Y||cc||digest
3. If aa≠00 or bb≠01 or cc≠00  

 or Y≠(FF)n-m-3  
 or digest≠hash_id||H(M):  
   Output REJECT

4. Else: Output ACCEPT



Attacking Buggy Verification

X = 00 01 FF 00 <DIGEST> <IGNORED ………… BYTES>Buggy:

 Broken

One or more FF bytes

To forge a signature on message M’: Find number σ’ such that

(σ’)3= 00 01 FF 00 H(M’) <JUNK> mod N

We’ll use one FF byte m bytes long n-m-4 bytes free  
for attacker to pick

00 01 FF 00 H(M’) 00 …… 00 ≤ (σ’)3 ≤ 00 01 FF 00 H(M’) FF …… FF

Freedom to pick <JUNK> means we can take any σ’ such that:

Sufficient to find: Any perfect cube in the given range. Then apply perfect cube 
attack.

Fun! (Assignment 2)



Steps in Attack

1. Pick M you want to forge on 

2. Compute lower and upper bounds (numbers), using H(M). 

3. Find a perfect cube x within allowed range 

4. Output cube root of x as forged signature σ.



Attack Summary

- When padding check allows variable number of FF bytes, forging 
is easy 
- Only requires a simple search for a perfect cube in a given range 

- Why did so many make this error? 
- I don’t really know for sure 
- My guesses: 

- Plugging in libraries for padding removal without checks. 
- Specifically, ASN.1 parsing libraries are used to remove 

padding. These are overkill and programmers do not fully 
understand their behavior (but they also don’t want to do the 
parsing by hand). 

- Traditional unit testing is hard to apply to crypto. 
- Attack defeated by using large e=65537



Other RSA Padding Schemes: Full Domain Hash

N: n-byte long integer. 
H:  Hash fcn with m-byte output. 
k = ceil((n-1)/m)

Ex: SHA-256, m=32

Sign((N,d),M):

1. X←00||H(1||M)||H(2||M)||…||H(k||M)
2. Output σ = Xd mod N

Verify((N,e),M,σ):
1. X←00||H(1||M)||H(2||M)||…||H(k||M)
2. Check if σe = X mod N

Bonus: Can prove security,  
in a strong sense.



Other RSA Padding Schemes: PSS (In TLS 1.3)

- Somewhat complicated 
- Randomized signing

Bonus: Can prove security,  
in a strong sense. (CS284!)



RSA Signature Summary

- Plain RSA signatures are very broken 
- PKCS#1 v.1.5 is widely used, in TLS, and fine if implemented 

correctly 
- Full-Domain Hash and PSS should be preferred 
- Don’t roll your own RSA signatures!



Other Practical Signatures: DSA/ECDSA

- Based on ideas related to Diffie-Hellman key exchange 
- Secure, but ripe for implementation errors



Bonus: New Signature Vulnerability Yesterday!

- Details not known yet, but it looks like Windows was not checking 
crucial parameters before doing signature verification 

- Windows was accepting malicious code as authentic.

https://blog.lessonslearned.org/chain-of-fools/
https://media.defense.gov/2020/Jan/14/2002234275/-1/-1/0/CSA-WINDOWS-10-CRYPT-LIB-20190114.PDF

https://blog.lessonslearned.org/chain-of-fools/
https://media.defense.gov/2020/Jan/14/2002234275/-1/-1/0/CSA-WINDOWS-10-CRYPT-LIB-20190114.PDF


The End


