Crypto
Part 2 of 3

CMSC 23200/33250, Winter 2020, Lecture 4

David Cash & Blase Ur

University of Chicago

Tool to address key-length of OTP: Stream Ciphers

Stream cipher syntax: Algorithm G that takes one input
and produces an very long bit-string as output.

Usually very, very large
(petabytes if needed)

AN G

G(k): 11111010001000111010100101000101100100111100...

Key/Seed k: 1100..11 —— Typically 16 or 32 bytes.

@ 00100010011111010111011011100001010100111000..

Use G(seed) in place of pad.
Still malleable and still one-time, but key is shorter.

Addressing pad reuse: Stream cipher with a nonce

Stream cipher with a nonce: Algorithm G that takes two
inputs and produces a very long bit-string as output.

Nonce IV: Key/Seed k:
1100..11 1100..11

G(V,k): 11111010001000111010100101000101100100111100..

-“nonce” = "number once”.
- Usually denoted |V = “initialization vector”

security goal: When k is random and unknown, G(IV, k) should
‘look™ random and independent for each value of IV.

Solution 1: Stream cipher with a nonce

k
IV<0 my

D G(IV,k)

IV || ciphertext

IV<IV+1

mp

D| G(1v,k)

IV | | ciphertext

- It nonce repeats, then pad repeats

Example of Pad Re-use: WEP &9} Warning: Broken &9}

[EEE 802.11b WEP: WiFi security standard '97-'03

IV

+—>

IV IS 24-bit wide counter

- Repeats after 224 frames (=16 million)
-1V is often set to zero on power cycle

Solutions: (WPA2 replacement)
- Larger |V space, or force rekeying more often
- Set |V to combination of packet number, address, etc

Example of Pad Re-use: WEP (@L% Warning: Broken &9}

[EEE 802.11b WEP: WiFi security standard '97-'03

adlfS TECHNICA BIZ&IT TECH SCIENCE POLICY CARS GAMING & CULTURE FORUMS

BIZ & IT —

Serious flaw in WPA2 protocol lets
= attackers intercept passwords and much
_of more

KRACK attack is especially bad news for Android and Linux users.

DAN GOODIN - 10/15/2017, 11:37 PM

SOl utions : (W parameters to their initial valueg.

encryption to be bypassed. Ars Te

- Larger IV sy «rack here.
- Set |V to combination of packet number, address, etc

KRACK forces the nonce reuse 1§y a way that allows the
' | canLadegTier has much more about

Example Stream Cipher w/ Nonces: ChaCha20

- Key-length: 256 bits
- Generates stream by applying a fixed permutation to seed and counter
- Uses “feed-forward” to break up permutation structure

seed
v ¥ v
256 bits pad(-, 0, 0) pad(-, 1,0) pad(*, 2, 0)
512 bits
\ 4 v \ 4
output block #0 output block #1 output block #2

512 bits 512 bits 512 bits

ChaCha20 Block Permutation

#define ROTL(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
#define QR(a, b, c, d) («¢ A

a+=b, d "=a, d = ROTL(d,16), \

c +=d, b "= ¢, b = ROTL(b,12), \

a+=b, d "=a, d = ROTL(d4, 8), \

c +=d, b "= ¢, b = ROTL(b, 7))

#define ROUNDS 20

void chacha block(uint32 t out[16], uint32 t const in[16])
{

int i;

uint32 t x[16];

for (i = 0; i < 16; ++i)
X[1] = in[i];

// 10 loops x 2 rounds/loop = 20 rounds

for (i = 0; i < ROUNDS; i += 2) {
// 0dd round
QR(x[0], x[4]1, x[8], x[12]); // column
OR(x[1]1, x[51, X[91, x[13]1); // column
QR(x[2], x[6]1, x[10], x[14]); // column
OR(x[31, x[71, x[11]1, x[151); // column
// Even round

W N = O

OR(x[0], x[5], x[10], x[15]); // diagonal 1 (main diagonal)

QR(x[1], x[6]1, x[11], x[12]); // diagonal 2
QR(x[2]1, x[71, X[81, x[13]); // diagonal 3
OR(x[3]1, x[4]1, x[91, x[141): // diagonal 4

la b c d
- v
¢ >
v <<<16
v —t
De——+4
v <<<12
— v
¢ >
v <<< 8
v :4—————$
<
v v v

277

or -0 5 <o o Assignment 2: Develop attack when a weak

out[i] = x[i] + in[i];

) “statistical” stream cipher is used.

Issues with One-Time Pad

1. Reusing a pad is insecure \/ Use unique nonces

2. One-Time

3. One-Time

Pad

Pad

IS malleable
has a long key

Use stream cipher with short key

More difficult to address:; We will return to this later.

Next Up: Blockciphers

Blockciphers are a ubiquitous crypto tool applied to many
different problems.

Informal definition: A blockcipher is essentially a
substitution cipher with a very large alphabet and a very
compact key. Require that efticient algorithms for forward and

backward directions.

Typical parameters:
Alphabet = {0,1}128
Key length = 16 bytes.

Plan: Build many higher-level protocols from a good blockcipher.
Now: Two example blockciphers, DES and AES.

Data Encryption Standard (DES)

- Originally a designed by IBM
- Parameters adjusted by NSA
- NIST Standard in 1976

- Block length n = 64

- Key length k = 56

Parses input block into 32-bit
chunks and applies 16
rounds of a “Feistel Network”

DES is Broken A Warning: Broken @5

Attack Complexity Year
Biham&Shamir 247 encrypted blocks 1992
DESCHALL 41 days 1997
EFF Deepcrack 4.5 days 1993
EFF Deepcrack 22 hours 1999

-3DES (“Triple DES”) is still used by banks
- 3DES encrypts three times (so key length is 118)
- 3DES is not known to be broken but should be avoided

ﬁ craCK.Sh HOME GET CRACKING 100% GUARANTEE THE TECHNOLOGY FAQ CONTACT

G ET c RAC KI N G NOTE: There are currently extremely high wait times.

We're in the process of adding capacity to speed things up.

These are the types of DES cracking jobs that we support: QUEUE WAIT TIME:

Standard 46.2 Days, ASAP 1.0 Days

SUBMIT A JOB!

Priority: Enter Token For Pricing ¥

WARNING: Charges will show up on your credit card statement as from “crack.sh” and processed through Stripe. We've experienced a high
number of our charges being reported as fraudulent, so we'll be blacklisting any accounts that contest charges for jobs submitted. If you wish to
cancel a job or have any issues, please email david@toorcon.org and we’'ll be happy to cancel and refund any charges.

Advanced Encryption Standard (AES)

- NIST ran competition to replace DES starting in 1997

- Several submissions, Rijndael chosen and standardized
- AES is now the gold standard blockcipher

- Very tast; Intel chips even have AES instructions

Advanced Encryption Standard (AES)

- Due to Rijmen and Daemen
- Block length n = 128
- Key length k = 128,192,256

- Different structure from DES.

- 10 rounds of “substitution-
permutation network”

AES is not (know to be) broken

Attack Complexity

Bogdanov et al. ~2126.1 2011

- Compare to trying all keys: 2126.1 = 2128 /4
- Always prefer AES for a blockcipher it setting can
support it (i.e. everything except low-power hardware)

Blockcipher Security

- AES is thought to be a good “Pseudorandom Permutation”

X X

\ g \

“ AESK(X) AESK() Vs rand()
—

“ rand(x)

- Outputs all look random and independent, even when
inputs are maliciously controlled.
- Formal definition in CS284.

Example - AES Input/Outputs

- Keys and inputs are 16 bytes = 128 bits

-K1: 9500924ad9d1b7a28391887d95fcfbd5
-K2: 9500924ad9d1b7a28391887d95fcfbd6

AESk1(00..
AESk1(00..
AESk2(00..
AESk2(00..

00)=8b805ddb39f3eee72b43bf95c9ced10f
01)=9918e60f2a20blb81674646dceebdb51
00)=1303270bed48ce8b8dd8316fdba38eb04
01)=96ba598a55873ecl286af646073e36£f6

S0 we have a blockcipher...

- Now what?

It only processes 16 bytes at a time, and | have a whole
lot more data than that.

This next step is where everything flies off the rails in
implementations...

Encrypting large files: ECB (Gl)) Warning: Broken &\

- ECB = “Electronic Code Book”

AES-ECBy (M)

- Parse M into blocks My, My, ..., M¢
// all blocks except My are 16 bytes
- Pad M up to 16 bytes
- For i=1..t:
- Ci ¢« AESx(M;)
- Return Ci1,..., C¢

M, M; M¢
' } :
AESk() AESk() « o AESk()

The ECB Penguin & Warning: Broken @}

- 16 byte chunks are consecutive pixels

Plaintext ECB Ciphertext

- It gets even worse...

Encrypting large files, Attempt #2: CTR

- CTR = “Counter Mode”

- |ldea: Build a nonce-based stream cipher from AES

AES-CTRy (IV,M)

- Parse M into blocks M, M, ..

., M

// all blocks except My are 16 bytes

- For i=1...t:
- Ci ¢ M;®AESk (IV+1)
- Return 1V, C1 ,..., Ce

IV IV+1 IVl-l-Z
AESk () AESk()

M14$ M2‘$
\ 4
Ci

IV

Notes:
- No need to pad last block
- Must avoid reusing part of
stream

When combined with
authentication, CTR is a
good cipher.

Penguin Sanity Check

Plaintext ECB Ciphertext CTR Ciphertext

5

Looks random

Encrypting large files, Attempt #3: CBC

- CBC = “Cipher Block Chaining” £E3=CBCk(IV,H)

- Nonce-based, but not a stream - (PEIEE B IS [0S M, Wy o0 B
// all blocks except My are 16 bytes

Ci.pher. | | - Pad M: up to 16 bytes
- Historical option (sometimes - CoeIV
used without nonce) - For i=1..t:

- Ci e AESk (Mi®Ci-1)
- Return Cy,Cq ,..., Ce

Decryption
IV M, M, Me IV Ci1 C>
AESk () AESk () c o o AESk() AES-1k() AES-Ix() | °

— B H T 55
M; Mo

IV Ci C2 Ct

Encrypting large files, Attempt #3: CBC

- CBC = “Cipher Block Chaining”
- Nonce-based, but not a stream

cipher

- Historical option (sometimes

used without nonce)

AES-CBCx (IV,M)

IV M M
A A
¥ v

AESk () AESk ()

- Parse M into blocks M, My, ..., M¢
// all blocks except My are 16 bytes

- Pad M: up to 16 bytes
- Coe<IV
- For i=1..t:

- Ci e AESk (Mi®Ci-1)
- Return Co,C1,..., Ct

M¢

9

AESz ()

When combined with
authentication, CBC is a
good cipher.

IV C1 Cz

Warning: Padding creates
havoc with authentication.
Very ditficult to implement.

Blockcipher Encryption Summary

- AES is unbroken

- AES-CTR is most robust construction for confidentiality

- AES-CTR/AES-CBC do not provide authenticity/integrity and should
almost never be used alone.

Next Up: Integrity and Authentication

- Authenticity: Guarantee that adversary cannot change or insert
ciphertexts
- Achieved with MAC = “Message Authentication Code”

Integrity: Preventing message modification

e

® -
&

Encryption Integrity: An abstract setting

M’ <Deck(C')
or “ERROR”

D A '

Encryption satisfies integrity if it is infeasible for an
adversary to send a new C’ such that Deck(C’) #ERROR.

AES-CTR does not satisfy integrity

M = please pay ben 20 bucks

C = b0595fafd05df4a7d8al4ced2dlec800d2daed851£ff509b3e446a782871c2d
\

v
C’= b0595fafd05df4a7d8al4ced2dlec800d2daed851£ff509b3e546a782871c2d

M’ = please pay ben 21 bucks

Inherent to stream-cipher approach to encryption.

AES-CBC does not satisfy integrity

AES-CBC Decryption:

IV Ch C»
AES-1x () AES-1k ()

T

M M;

IV,C.1,C:

l

\

ah
l

IV,C®X,Cs
Decrypts to:

R,M;®X

Where R Is some unpredictable block.

Message Authentication Code

A message authentication code (MAC) is an algorithm that
takes as input a key and a message, and outputs an
‘unpredictable” tag.

M—>| MACk() |—> T

T=MACk (M) ?

MAC Security Goal: Unforgeability

T<MACk (M) “ l ‘ V“ T'=MACg(M')?
“ACCEPT"
\ J or “ERROR”

MAC satisfies unforgeability if it is unfeasible for Adversary
to fool Bob into accepting M’ not previously sent by Alice.

MAC Security Goal: Unforgeability

Note: No encryption on this slide.

M = please pay ben 20 bucks

827851dc9cf0£f92ddcdc552572f£fd8bc
M’,T’

' T

M’'= please pay ben 21 bucks

H
Il

T’'= baeafd8a891de588ce588f£8535ef£58b6

Should be hard to predict T’ for any new M” .

MACs In Practice: Pretty much always use HMAC

- Don't worry about how it works.
- More precisely: Use HMAC-SHA2. More on hashes and
MACSs later.

\ HMAC(k,m) |

|

* opad
output |«—— h

- Other options: Poly1305-AES or CBC-MAC (the latter is tricky)

Authenticated Encryption

Encryption that provides confidentiality and integrity is
called Authenticated Encryption.

- Built using a good cipher and a MAC.
- Ex: AES-CTR with HMAC-SHA?

- Best solution: Use ready-made Authenticated Encryption
- Ex: AES-GCM is the standard

Building Authenticated Encryption

Encryptki,xk2 (M)

K1 K2
C T -
M —— |Encki() > MACk2 () output:
l ‘ (C,T)
C T
Decryptri,k2(C,T) g, K1
l Output:
‘ T C M Mrif Tr=T
~ MACKZ()-——I > [Decki () 1l if T'=T

T'=T7?

-Summary: MAC the ciphertext, not the message

Chosen-Ciphertext Attacks (CCA) against Encryption

- Integrity + Confidentiality = security against CCAs

System
(e.g. webserver)
C 4
—_—mmm K
\
“ <info about M’'> Enck()
—
M’ «Deck(C’)
- Adversary provides ciphertext Deck ()
Inputs to system

- Obtains info about decryptions of its
ciphertexts

Next Up: Hash Functions

Definition: A hash function is a deterministic function H that reduces arbitrary
strings to fixed-length outputs.

Output length
D5: m = 128 bits
HA-1: m = 160 bits
HA-256: m = 256 DIts
HA-512: m = 512 bits
HA-3: m >= 224 Dits

I

M——| H |[——H(M)

e

Some security goals:

- collision resistance: can't find M = M’ such that H(M) = H(M")

- preimage resistance: given H(M), can’t find M

- second-preimage resistance: given H(M), can'’t find M’ s.1.
H(M’) = H(M)

Note: Very different from hashes used in data structures!

DWW

Why are collisions bad?

The binary
should hash to
3477a3498234f

Hashes to
3477a3498234f,

A so | accept.
L[l)=3477a3498234f

MDS5 (

\/

W)=3477a3498234f
00l

MD5 (

Hash Functions are not MACs

— H(M) M—>»| MACk() —> T

~ |
_

Both map long inputs to short outputs... But a hash function does not take a key.

Intuition: a MAC is like a hash function, that only the holders of key can evaluate.

Hash Function Security History

- Can always find a collision in 2m2 time («2m time). “Birthday Attack”

- MD5 (1992) was broken in 2004 - can now find collisions very quickly.
- SHA-1 (1995) was broken in 2017 - A big computer can find collisions
- SHA-256/SHA-512 (2001) are not broken

- SHA-3 (2015) is new and not broken

d131dd02c5e6eec4693d9a0698aff95¢c 2fcab58712467eab4004583eb8fb7£89
MD5(55ad340609f4b30283e488832571415a 085125e8f7cdc99£d91dbdf280373c5b)

d8823e3156348f5baebdacd436c919c6 dd53e2b487da03£d02396306d248cdal

e99£f33420£577ee8ce54b67080a80dle c69821bcb6a8839396£9652b6££72a70

d131dd02c5e6eec4693d9a0698aff95c 2fcab50712467eab4004583eb8fb7£89
— MDS(55ad340609f4b30283e4888325f1415a 085125e8f7cdc99£d91dbd7280373c5b)
- d8823e3156348f5baebdacd436c919c6 dd53e23487da03£d02396306d248cda0

e99f33420£577ee8ce54b67080280d1le c69821bcb6a8839396£965ab6£f£f72a70

Xiaoyun Wang (Tsinghua University), 2004
- Broken with clever techniques
- Compare to DES (broken b/c key too short)

In Assignment 2: Install and use actual attack
code to see how MD5 can be abused.

MACSs from Hash Functions

Goal: Build a secure MAC out of a good hash function.

In Assignment 2: Break this construction!

Construction: MAC(K, M) = H(K || M) & Warning: Broken @\

- Totally insecure it H = MD5, SHA1, SHA-256, SHA-512
- |s secure with SHA-3

Construction: MAC(K, M) = H(M || K) (‘1,)3 Just don’t @)

Upshot: Use HMAC:; It's designed to avoid this and other issues.

L ater: Hash functions and certificates

The Enad

