
David Cash & Blase Ur

Crypto
Part 2 of 3

CMSC 23200/33250, Winter 2020, Lecture 4

University of Chicago

Tool to address key-length of OTP: Stream Ciphers

Stream cipher syntax: Algorithm G that takes one input
and produces an very long bit-string as output.

1100..11

11111010001000111010100101000101100100111100…

G

⨁ 00100010011111010111011011100001010100111000…

Use G(seed) in place of pad.
Still malleable and still one-time, but key is shorter.

Typically 16 or 32 bytes.Usually very, very large
(petabytes if needed)

Key/Seed k:

G(k):

Addressing pad reuse: Stream cipher with a nonce

- “nonce” = “number once”.
- Usually denoted IV = “initialization vector”

Stream cipher with a nonce: Algorithm G that takes two
inputs and produces a very long bit-string as output.

1100..11

11111010001000111010100101000101100100111100…

1100..11

Key/Seed k:Nonce IV:

G(IV,k):

Security goal: When k is random and unknown, G(IV,k) should
“look” random and independent for each value of IV.

Solution 1: Stream cipher with a nonce

m1

⨁ G(IV,k)

k

k

ciphertext

IV←0

IV

IV←IV+1

…

m2

⨁

ciphertext

G(IV,k)

IV

- If nonce repeats, then pad repeats

Example of Pad Re-use: WEP Warning: Broken

IEEE 802.11b WEP: WiFi security standard ’97-‘03

IV

IV is 24-bit wide counter

- Repeats after 224 frames (≈16 million)
- IV is often set to zero on power cycle

Solutions: (WPA2 replacement)
- Larger IV space, or force rekeying more often
- Set IV to combination of packet number, address, etc

Example of Pad Re-use: WEP Warning: Broken

IEEE 802.11b WEP: WiFi security standard ’97-‘03

IV

IV is 24-bit wide counter

- Repeats after 224 frames (≈16 million)
- Often set to zero on reset

Solutions: (WPA2 replacement)
- Larger IV space, or force rekeying more often
- Set IV to combination of packet number, address, etc

- Key-length: 256 bits
- Generates stream by applying a fixed permutation to seed and counter
- Uses “feed-forward” to break up permutation structure

Example Stream Cipher w/ Nonces: ChaCha20

ChaCha20 Block Permutation

#define ROTL(a,b) (((a) << (b)) | ((a) >> (32 - (b))))
#define QR(a, b, c, d) (\

a += b, d ^= a, d = ROTL(d,16), \
c += d, b ^= c, b = ROTL(b,12), \
a += b, d ^= a, d = ROTL(d, 8), \
c += d, b ^= c, b = ROTL(b, 7))

#define ROUNDS 20

void chacha_block(uint32_t out[16], uint32_t const in[16])
{

int i;
uint32_t x[16];

for (i = 0; i < 16; ++i)
x[i] = in[i];

// 10 loops × 2 rounds/loop = 20 rounds
for (i = 0; i < ROUNDS; i += 2) {

// Odd round
QR(x[0], x[4], x[8], x[12]); // column 0
QR(x[1], x[5], x[9], x[13]); // column 1
QR(x[2], x[6], x[10], x[14]); // column 2
QR(x[3], x[7], x[11], x[15]); // column 3
// Even round
QR(x[0], x[5], x[10], x[15]); // diagonal 1 (main diagonal)
QR(x[1], x[6], x[11], x[12]); // diagonal 2
QR(x[2], x[7], x[8], x[13]); // diagonal 3
QR(x[3], x[4], x[9], x[14]); // diagonal 4

}
for (i = 0; i < 16; ++i)

out[i] = x[i] + in[i];
}

QR(a, b, c, d):

???
In Assignment 2: Develop attack when a weak
“statistical” stream cipher is used.

Issues with One-Time Pad

1. Reusing a pad is insecure
2. One-Time Pad is malleable
3. One-Time Pad has a long key

Use unique nonces

Use stream cipher with short key

More difficult to address; We will return to this later.

Next Up: Blockciphers

Blockciphers are a ubiquitous crypto tool applied to many
different problems.

Informal definition: A blockcipher is essentially a
substitution cipher with a very large alphabet and a very
compact key. Require that efficient algorithms for forward and
backward directions.

Typical parameters:
Alphabet = {0,1}128
Key length = 16 bytes.

Now: Two example blockciphers, DES and AES.
Plan: Build many higher-level protocols from a good blockcipher.

Data Encryption Standard (DES)

- Originally a designed by IBM
- Parameters adjusted by NSA
- NIST Standard in 1976

- Block length n = 64
- Key length k = 56

L0 R0

L1 R1

⨁

F1

L2 R2

⨁

F2

Parses input block into 32-bit
chunks and applies 16
rounds of a “Feistel Network”

DES is Broken

Attack Complexity Year

Biham&Shamir 247 encrypted blocks 1992

DESCHALL 41 days 1997

EFF Deepcrack 4.5 days 1998

EFF Deepcrack 22 hours 1999

- 3DES (“Triple DES”) is still used by banks
- 3DES encrypts three times (so key length is 118)
- 3DES is not known to be broken but should be avoided

Warning: Broken

Advanced Encryption Standard (AES)

- NIST ran competition to replace DES starting in 1997
- Several submissions, Rijndael chosen and standardized
- AES is now the gold standard blockcipher
- Very fast; Intel chips even have AES instructions

- Due to Rijmen and Daemen
- Block length n = 128
- Key length k = 128,192,256

M

⨁

P1

- Different structure from DES.
- 10 rounds of “substitution-

permutation network”

Advanced Encryption Standard (AES)

K1

P2

K2

P3

⨁

AES is not (know to be) broken

Attack Complexity Year

Bogdanov et al. ≈2126.1 2011

- Compare to trying all keys: 2126.1 ≈ 2128 /4

- Always prefer AES for a blockcipher if setting can
support it (i.e. everything except low-power hardware)

Blockcipher Security

- AES is thought to be a good “Pseudorandom Permutation”

AESK()

x

AESK(x)
rand()

x

rand(x)
Vs

- Outputs all look random and independent, even when
inputs are maliciously controlled.

- Formal definition in CS284.

Example - AES Input/Outputs

-K1: 9500924ad9d1b7a28391887d95fcfbd5
-K2: 9500924ad9d1b7a28391887d95fcfbd6

AESK1(00..00)=8b805ddb39f3eee72b43bf95c9ce410f
AESK1(00..01)=9918e60f2a20b1b81674646dceebdb51
AESK2(00..00)=1303270be48ce8b8dd8316fdba38eb04
AESK2(00..01)=96ba598a55873ec1286af646073e36f6

- Keys and inputs are 16 bytes = 128 bits

So we have a blockcipher…

- Now what?

It only processes 16 bytes at a time, and I have a whole
lot more data than that.

This next step is where everything flies off the rails in
implementations…

Encrypting large files: ECB Warning: Broken

AESK()

- ECB = “Electronic Code Book”

M1

C1

AESK()

M2

C2

AESK()

Mt

Ct

. . .

AES-ECBk(M)
- Parse M into blocks M1, M2, …, Mt  

// all blocks except Mt are 16 bytes
- Pad Mt up to 16 bytes
- For i=1…t:

- Ci ← AESk(Mi)
- Return C1 ,…, Ct

The ECB Penguin Warning: Broken

- 16 byte chunks are consecutive pixels

- It gets even worse…

Plaintext ECB Ciphertext

Encrypting large files, Attempt #2: CTR

- CTR = “Counter Mode”
- Idea: Build a nonce-based stream cipher from AES

AES-CTRk(IV,M)
- Parse M into blocks M1, M2, …, Mt  

// all blocks except Mt are 16 bytes
- For i=1…t:

- Ci ← Mi⊕AESk(IV+i)
- Return IV, C1 ,…, Ct

AESK()

IV

C1

AESK()

IV+1

. . .

IV+2

AESK()

IV+t

IV

M1

C2

M2

Ct

Mt

Notes:
- No need to pad last block
- Must avoid reusing part of

stream

When combined with
authentication, CTR is a
good cipher.

Penguin Sanity Check

Plaintext ECB Ciphertext CTR Ciphertext

Looks random

Encrypting large files, Attempt #3: CBC

- CBC = “Cipher Block Chaining”
- Nonce-based, but not a stream

cipher
- Historical option (sometimes

used without nonce)

AES-CBCk(IV,M)
- Parse M into blocks M1, M2, …, Mt  

// all blocks except Mt are 16 bytes
- Pad Mt up to 16 bytes
- C0←IV
- For i=1…t:

- Ci ← AESk(Mi⊕Ci-1)
- Return C0,C1 ,…, Ct

AESK()

IV

C1

AESK() . . . AESK()

IV C2 Ct

Mt

M1 M2 Mt

…

AES-1K()

IV

M1

AES-1K()

M2

C1 C2
Decryption

. . .

Encrypting large files, Attempt #3: CBC

- CBC = “Cipher Block Chaining”
- Nonce-based, but not a stream

cipher
- Historical option (sometimes

used without nonce)

AES-CBCk(IV,M)
- Parse M into blocks M1, M2, …, Mt  

// all blocks except Mt are 16 bytes
- Pad Mt up to 16 bytes
- C0←IV
- For i=1…t:

- Ci ← AESk(Mi⊕Ci-1)
- Return C0,C1 ,…, Ct

AESK()

IV

C1

AESK() . . . AESK()

IV C2 Ct

Mt

M1 M2 Mt

… When combined with
authentication, CBC is a
good cipher.

Warning: Padding creates
havoc with authentication.
Very difficult to implement.

- AES is unbroken
- AES-CTR is most robust construction for confidentiality
- AES-CTR/AES-CBC do not provide authenticity/integrity and should

almost never be used alone.

Blockcipher Encryption Summary

- Authenticity: Guarantee that adversary cannot change or insert
ciphertexts

- Achieved with MAC = “Message Authentication Code”

Next Up: Integrity and Authentication

Integrity: Preventing message modification

Encryption Integrity: An abstract setting

C←EncK(M) C C’ M’←DecK(C’)  
or “ERROR”

Encryption satisfies integrity if it is infeasible for an
adversary to send a new C’ such that DecK(C’)≠ERROR.

AES-CTR does not satisfy integrity

C = b0595fafd05df4a7d8a04ced2d1ec800d2daed851ff509b3e446a782871c2d

M = please pay ben 20 bucks

C’= b0595fafd05df4a7d8a04ced2d1ec800d2daed851ff509b3e546a782871c2d

M’ = please pay ben 21 bucks

Inherent to stream-cipher approach to encryption.

AES-CBC does not satisfy integrity

AES-1K()

IV

M1

AES-1K()

M2

C1 C2
AES-CBC Decryption: IV,C1,C2

IV,C1⊕X,C2
Decrypts to:

R,M2⊕X

Where R is some unpredictable block.

Message Authentication Code

A message authentication code (MAC) is an algorithm that
takes as input a key and a message, and outputs an
“unpredictable” tag.

MACK()M

K

T

T←MACK(M)

M,T

K
K

T=MACK(M)?

MAC Security Goal: Unforgeability

T←MACK(M) M,T M’,T’

“ACCEPT”  
or “ERROR”

MAC satisfies unforgeability if it is unfeasible for Adversary
to fool Bob into accepting M’ not previously sent by Alice.

T’=MACK(M’)?

MAC Security Goal: Unforgeability

T = 827851dc9cf0f92ddcdc552572ffd8bc

M = please pay ben 20 bucks

M’= please pay ben 21 bucks

M,T M’,T’

Note: No encryption on this slide.

T’= baeaf48a891de588ce588f8535ef58b6

Should be hard to predict T’ for any new M’.

MACs In Practice: Pretty much always use HMAC

- Don’t worry about how it works.
- More precisely: Use HMAC-SHA2. More on hashes and
MACs later.

- Other options: Poly1305-AES or CBC-MAC (the latter is tricky)

Authenticated Encryption

Encryption that provides confidentiality and integrity is
called Authenticated Encryption.

- Built using a good cipher and a MAC.
- Ex: AES-CTR with HMAC-SHA2

- Best solution: Use ready-made Authenticated Encryption
- Ex: AES-GCM is the standard

Building Authenticated Encryption

EncK1() MACK2()M
C

K1 K2

T

C T

EncryptK1,K2(M)

Output:  
(C,T)

MACK2()

K2

T’=T?

DecryptK1,K2(C,T)

Output:  
M’if T’=T  
⊥ if T’≠T

C
DecK1()

K1

C M’T’

- Summary: MAC the ciphertext, not the message

Chosen-Ciphertext Attacks (CCA) against Encryption

EncK()

System
(e.g. webserver)

C’

M’←DecK(C’)

- Adversary provides ciphertext
inputs to system

- Obtains info about decryptions of its
ciphertexts

K

DecK()

<info about M’>

- Integrity + Confidentiality = security against CCAs

Next Up: Hash Functions

Definition: A hash function is a deterministic function H that reduces arbitrary
strings to fixed-length outputs.

HM H(M)

MD5: m = 128 bits

SHA-1: m = 160 bits

SHA-256: m = 256 bits
SHA-512: m = 512 bits

SHA-3: m >= 224 bits

Some security goals:

- collision resistance: can’t find M != M’ such that H(M) = H(M’)

- preimage resistance: given H(M), can’t find M

- second-preimage resistance: given H(M), can’t find M’ s.t.

 H(M’) = H(M)
Note: Very different from hashes used in data structures!

Output length

Why are collisions bad?

The binary
should hash to

3477a3498234f

Hashes to
3477a3498234f,

so I accept.
MD5()=3477a3498234f

MD5()=3477a3498234f

Hash Functions are not MACs

Both map long inputs to short outputs… But a hash function does not take a key.

HM H(M) MACK()M

K

T

Intuition: a MAC is like a hash function, that only the holders of key can evaluate.

Hash Function Security History

- Can always find a collision in 2m/2 time (≪2m time). “Birthday Attack”
- MD5 (1992) was broken in 2004 - can now find collisions very quickly.
- SHA-1 (1995) was broken in 2017 - A big computer can find collisions
- SHA-256/SHA-512 (2001) are not broken
- SHA-3 (2015) is new and not broken

d131dd02c5e6eec4693d9a0698aff95c 2fcab58712467eab4004583eb8fb7f89
55ad340609f4b30283e488832571415a 085125e8f7cdc99fd91dbdf280373c5b
d8823e3156348f5bae6dacd436c919c6 dd53e2b487da03fd02396306d248cda0
e99f33420f577ee8ce54b67080a80d1e c69821bcb6a8839396f9652b6ff72a70

d131dd02c5e6eec4693d9a0698aff95c 2fcab50712467eab4004583eb8fb7f89
55ad340609f4b30283e4888325f1415a 085125e8f7cdc99fd91dbd7280373c5b
d8823e3156348f5bae6dacd436c919c6 dd53e23487da03fd02396306d248cda0
e99f33420f577ee8ce54b67080280d1e c69821bcb6a8839396f965ab6ff72a70

MD5(

= MD5(

)

)

Xiaoyun Wang (Tsinghua University), 2004
- Broken with clever techniques
- Compare to DES (broken b/c key too short)

In Assignment 2: Install and use actual attack
code to see how MD5 can be abused.

MACs from Hash Functions

Goal: Build a secure MAC out of a good hash function.

- Totally insecure if H = MD5, SHA1, SHA-256, SHA-512
- Is secure with SHA-3

Construction: MAC(K, M) = H(K || M) Warning: Broken

Upshot: Use HMAC; It’s designed to avoid this and other issues.

Later: Hash functions and certificates

Construction: MAC(K, M) = H(M || K) Just don’t

In Assignment 2: Break this construction!

The End

