
David Cash & Blase Ur

An Introduction to
Cryptography

CMSC 23200/33250, Winter 2020, Lecture 3

University of Chicago

What is Cryptography?

Cryptography involves algorithms with security goals.

Cryptography involves using math to stop adversaries.

Common Security Goal: Secure Channel

Client Server

Secure channel

m1

m′ 2
m′ 1

m2

Confidentiality: Adversary does not learn anything about messages m1, m2

Authenticity: andm′ 1 = m1 m′ 2 = m2

Warning: subtitles abound

pw=“fourwordsuppercase”

WPA2 (Wi-Fi Protected Access 2): Secure WiFi

pw=“fourwordsuppercase”

Secure channel

Physical medium (air)

GSM Cell Phone Encryption (A5/1, A5/3)

Secure channel

Physical medium (air)

User Key

Alice Doe 340934c3

Betty Lee b9842544

Cheryl Zang 93d94520

Pat Dobbs 2ea0f48d

… …

K = b9842544

K

Disk Encryption

Hard DriveK = b9842544

Crypto in your browser: TLS (Transport Layer Security)

Internet

Secure channel

No pre-shared key, yet “guarantees” secret & authenticated
communication with amazon.com.

Crypto
primitives

• RSA, DSA,
ECDSA

• Diffie–Hellman,
ECDH

• HMAC
• MD5, SHA1,

SHA-2
• DES, 3DES,

RC4, AES
• Export grade

Ciphersuite
details

• Data structures
• Key derivation
• Encryption

modes, IVs
• Padding

Advanced
functionality

• Alerts & errors
• Certification /

revocation
• Negotiation
• Renegotiation
• Session

resumption
• Key reuse
• Compression
• State machine

Libraries

• OpenSSL
• LibreSSL,

BoringSSL
• NSS
• GnuTLS
• SChannel
• Java JSSE
• Everest / miTLS
• s2n

Applications

• Web browsers:
Chrome, Firefox,
IE/Edge, Safari

• Web servers:
Apache, IIS,
nginx, node, …

• Application
SDKs

• Certificates
• Protocols

• HTTP, IMAP, ..

Attacks on TLS

Attacks on TLS Stebila • 2018-09-04 5

Cross-protocol

DH/ECDH attack

RC4 biases,
rc4nomore,
Bar Mitzvah

CRIME,
BREACH, HEIST

Triple handshake
attack

goto
fail;

Goldberg &
Wagner

Netscape
PRNG attack

FREAK, Logjam

Sweet32

Lucky13

Termination,
Cookie Cutter

Bleichenbacher

SSL 2.0
downgrade,

FREAK, Logjam

POODLE

BEAST

Cross-protocol
DH/ECDH attack

SLOTH

Bleichenbacher,

Collisions

Ray & Dispensa

Debian
OpenSSL

entropy bug

“Most dangerous code…
”

MalloDroid

CCS
injection

BER
serk

Heartbleed

C
A breaches

Frankencerts

Virtual host
confusion

SSL strippingSMACK

STARTTLS

injection
Lucky

microseconds

Jager et al.
DROWN

Rest of this lecture

- Syntax of a cipher
- Some historical ciphers and how they were broken
- The One-Time Pad cipher and its security/insecurity
- Towards practice: Begin stream ciphers and blockciphers

Four settings for cryptography

Confidentiality Authenticity/Integrity

Yes
(“Symmetric”)

Symmetric Encryption
(aka Secret-key

Encryption)

Message
Authentication Code

(MAC)

No
(“Asymmetric”) Public-Key Encryption Digital Signatures

Security
Goal

Pre-shared
key?

Encrypt DecryptC

Ciphers (a.k.a. Symmetric Encryption)

K
m m/ ⊥

K

A cipher is a pair of algorithms Encrypt, Decrypt:

Require that decryption recovers the same message.

Historical Cipher: ROT13 (“Caesar cipher”)

Plaintext: DEFGH
Key (shift): 3
Ciphertext: FGHKL

Encrypt(K,m): shift each letter of plaintext forward by K
positions in alphabet (wrap from Z to A).

Plaintext: ATTACKATDAWN
Key (shift): 13
Ciphertext: NGGNPXNGQNJA

Historical Cipher: Substitution Cipher

Encrypt(K,m): Parse key K as a permutation π on {A,… Z}.
Apply π to each character of m.

P: ATTACKATDAWN
K: π
C: ZKKZAMZKYZGT

x π(x)
A Z
B U
C A
D Y
E R
F E
G X
H B
I D
J C
K M
L Q
M H
N T
O I
P S
Q V
R N
S P
T K
U O
V F
W G
X W
Y L
Z J

How many keys?
26! ≈ 288

9 million years to try all keys at rate of
1 trillion/sec

Cryptanalysis of Substitution Cipher

Quick recall: Bitwise-XOR operation

We will use bit-wise XOR:
0101
1100⨁

1001

Some Properties:
-X⨁Y = Y⨁X
-X⨁X = 000…0
-X⨁Y⨁X = Y

Cipher Example: One-Time Pad

Key K: Bitstring of length L

Plaintext M: Bitstring of length L

Encrypt(K,M): Output K⨁M Example:
0101
1100⨁

1001Decrypt(K,C): Output K⨁C

Correctly decrypts because
K⨁C = K⨁(K⨁M) = (K⨁K)⨁M = M

Q: Is the one-time pad secure?
Bigger Q: What does “secure” even mean?

Evaluating Security of Crypto

Kerckhoff’s Principle: Assume adversary knows your
algorithms and implementation. The only thing it
doesn’t know is the key.

1. Quantify adversary goals
Learn something about plaintext? Spoof a message?

2. Quantify adversary capabilities
View ciphertexts? Probe system with chosen inputs?

3. Quantify computational resources available to adversary
Compute cycles? Memory?

Breaking Encryption - A Basic Game

C1, …, CqK
m1, …, mq m/ ⊥

K

Ciphertext-only attack: The adversary sees ciphertexts and
attempts to recover some useful information about plaintexts.

More attack settings later.

Recovering Partial Information; Partial Knowledge

- Recovering entire messages is useful
- But recovering partial information is also be useful

- Attacker may know large parts of plaintext already (e.g.
formatting strings or application content). The attacker tries to
obtain something it doesn’t already know.
 M = http://site.com?password=▮▮▮▮▮▮▮▮

A lot of information is
missing here.

But can we say who this is?

“Attacks” versus “Security”

An attack is successful as long as it recovers some info
about plaintext that is useful to adversary.

Encryption should hide all possible partial information about
plaintexts, since what is useful is situation-dependent.

Attacks can succeed without recovering the key

C1, …, CqK
m1, …, mq m/ ⊥

K

Full break: Adversary recovers K, decrypts all ciphertexts.

However: Clever attacker may compromise encryption
without recovering the key.

Security of One-Time Pad

Claim: If adversary sees only one ciphertext under a
random key, then any plaintext is equally likely, so it
cannot recover any partial information besides plaintext
length.

Ciphertext observed:
Possible plaintext:
⇒ Possible key:

10111
00101
10010

1. Adversary goal: Learn partial information from plaintext
2. Adversary capability: Observe a single ciphertext
3. Adversary compute resources: Unlimited time/memory (!)

Issues with One-Time Pad

1. Reusing a pad is insecure
2. One-Time Pad is malleable
3. One-Time Pad has a long key

Issue #1: Reusing a One-Time Pad is Insecure

HELLOALICE

Pad

C1

⨁

=

PWDHAMSTER

Pad

C2

⨁

=

HELLOALICE Pad

⨁

PWDHAMSTER

=

⨁

=
Pad

Issue #1: Reusing a One-Time Pad is Insecure

S3CR3T1234

Pad

C1

⨁

=

3L33THXRRR

Pad

C2

⨁

=

C1 ⨁ C2

= S3CR3T1234 3L33THXRRR⨁

Has led to real attacks:
- Project Venona (1940s) attack by US on Soviet encryption
- MS Windows NT protocol PPTP
- WEP (old WiFi encryption protocol)
- Secure routers caught doing this last fall! [link]

https://seclists.org/bugtraq/2019/Nov/38

Issue #2: One-Time Pad is Malleable

PAYALICE$1

Pad

C

⨁

=

=
C’

⨁

000ALICE00

000DAVID00

⨁

Decrypt(Pad, C’) = PAYDAVID$1

Issue #3: One-Time Pad Needs a Long Key

Can prove: Any cipher as secure as the OTP must have:
Key-length ≥ Plaintext-length

In practice: (covered here and next lecture):
- Use stream cipher: Encrypt(K,m) = G(K)⊕m
- Add authentication tag
- Use nonces to encrypt multiple messages

Tool to address key-length of OTP: Stream Ciphers

Stream cipher syntax: Algorithm G that takes one input
and produces an very long bit-string as output.

1100..11

11111010001000111010100101000101100100111100…

G

⨁ DONUTSDONUTSDONUTSDONUTSDONUTSDONUTSDONUTSDON

Use G(seed) in place of pad.
Still malleable and still one-time, but key is shorter.

Typically 16 or 32 bytes.Usually very, very large
(petabytes if needed)

Key/Seed k:

G(k):

Stream Cipher Security Goal (Sketch)

Security goal: When k is random and unknown, G(k)
should “look” random.

… even to an adversary spending a lot of computation.

Much stronger requirement that “passes statistical tests”.

Brute force attack: Given y=G(k), try all possible k and
see if you get the string y.

Clarified goal: When k is random and unknown, G(k)
should “look” random to anyone with less computational
power needed for a brute force attack.

(keylength = 256 is considered strong now)

Aside: Fundamental Physical Property of the Universe*

There exist functions (say on bitstrings) that are:
 1) Very fast to evaluate
 2) Computationally infeasible to reverse

The disparity can be almost arbitrarily large!

Evaluating y = f(x) may only take a few cycles….

… and finding x from y within the lifetime of the universe
may not be possible, even with a computer made up of
every particle in the universe.

*conjectured, but unproven property

Computational Strength

Steps Who can do that many?
256 Strong computer with GPUs
280 All computers on Bitcoin network in 4.5 hours
2128 Very large quantum computer? (Ask Fred+Bill)*
2192 Nobody?
2256 Nobody?

*Not directly comparable but this is an estimate of equivalent power.
Quantum computers are most effective against public-key crypto, but they
also speed up attacks on symmeric-key crypto. (More next week.)

Example Stream Cipher: RC4

Internal state: Array S of 256 bytes and ptrs i, j

To compute next output byte:

OUT

Warning: Broken

Then:
- i=i+1 mod256
- j=j+S[i] mod256
- swap S[i] and S[j]

Not secure: Output bits
are biased in easily
detectable ways…. but
only retired by major
websites in 2016.

Replacement: Salsa20/
ChaCha, or AES-based
methods to be discussed

Pad reuse can still happen with stream ciphers

m1

⨁ G(k)

k

k

ciphertext

…

m2

⨁

ciphertext

G(k)

