scixd THE UNIVERSITY OF

/ CHICAGO

.3 Python
ﬁ@ Programming

Master's Program in Computer Science

il .

Python
Programming

Today

Python Scientific Stack: Working with Data

e pip, virtualeny, virtualenvwrapper
e NUMPY

° pandaS

e matplotlib

il .

Python
Programming

Today's Reading

Python Data Science Handbook, Jake VanderPlaas

Available electronically via UChicago Library's Safari account:

o C
o C
C

1d
1d

1d

pter 2: Introduction to NumPy
oter 3: Data Manipulation with Pandas

oter 4: Visualization with Matplotlib

il .

Python
Programming

PIP

A

Python
Programming

PyPIl: The Python Package Index

e https://pypi.python.org/pypi
e "A repository of software for the Python programming language."

e As of Saturday evening, there were 122,165 packages there. Each available via pip.

e Open to all Python developers for

= Consumption of other developers' distributions

m Publication of their own distributions

https://pypi.python.org/pypi

Python

< Programming

PyPIl: Popular Packages

e SciPy: "A Python-based ecosystem of open-source software for mathematics,
science, and engineering"

= NumPy: "The fundamental package for scientific computing with Python"

= pandas: "An open source ... library providing high-performance, easy-to-use data
structures and data analysis tools for the Python programming language."

= matplotlib: "A 2D plotting library which produces quality figures in a variety of
hardcopy formats and interactive environments across platforms."

e scikit-learn: "Simple and efficient tools for data mining and data analysis."

e flask: "A micro Web development framework for Python."

e django: "A high-level Python Web framework that encourages rapid development
and clean, pragmatic design."

2.

Python
Programming

pip

A tool for installing Python packages.

PYth on source: https://packaging.python.org/tutorials/installing-packages/

Programming

Virtual Environments: virtualenv

"Python 'Virtual Environments' allow Python packages to be installed in an isolated
location rather than being installed globally."

Virtual environments have separate and distinct directories for installed packages.

e venv: Available by default in Python 3.3+
e virtualenv: Must be installed separately (pip install virtualenv)

| use virtualenv with a tool called virtualenvwrapper.
More info: https://virtualenvwrapper.readthedocs.io

https://virtualenvwrapper.readthedocs.io/en/latest/

source: https://packaging.python.org/tutorials/installing-packages/

Programming

Virtual Environments: virtualenvwrapper

34 Python
<y Programming

Python Scientific
Stack

i--4 Python
Programming

NumPy

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

Programming

Data Types in Python

We have seen that Python's dynamic typing makes it very flexible, but this
flexibility comes at a cost.

Instances of many of Python's built-in types are "cleverly disguised C structures,"
containing the data associated with the object, along with header information:

e ob_refcnt: a reference count used for garbage collection
e ob_type: the type of the object
e 0ob size: the size of the data members

3.3

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

< Programming

Data Types in Python: Integer

Whereas a C integer is "essentially a label for a position in memory whose bytes

encode an integer value," a Python integer is an object in memory containing the
object's header info, in addition to the integer value itself.

Python Integer

PyObject_HEAD

digit

CInteger

.4

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

Programming

Data Types in Python: List

Lists are an example of an extremely flexible data type in Python. Aside from the
conveniences afforded to us by way of Python's dynamic typing, a Python list can
contain elements of heterogeneous types.

In order to accomplish this, each element of a Python list is itself a Python object,
complete with all the necessary header information (even if the list happens to
contain homogenous elements exclusively).

Python List

PyObject_HEAD

length

items I——b

0x310718

Note: The elements of the list are not

0x310748

0x310730

0x310760

contiguous (nor are they in order) in memory

Source: Python Data Science Handbook, Jake VanderPlas

0x310700

0x3106b8

0x3106d0

0x3106e8

.6

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

Programming

Fixed-Type Arrays in Python

When working with homogenous data, Python makes a few alternatives to the
list type available to us.

The array module can be used to create dense, homogenous arrays.

.7

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

Programming

Enter NumPy

Efficient Storage + Efficient Operations: ndarray

"While Python's array object provides efficient storage of array-based data,
NumPy adds to this efficient operations on that data."

numpy np

3

.8

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

< Programming

NumPy Arrays

NumPy arrays are constrained to a single type and represent a single contiguous
block of data. They lack the flexibility of the Python list, but can be more efficient
for storage and manipulation of the data they contain.

NumPy will upcast data where possible for data of different types in a single
array. For example, integers can be upcast to floats.

numpy
np.array([1l,

array ([' '

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

Programming

NumPy Arrays

You can specify the type of the elements of the array using the dtype keyword in
the np.array constructor.

.10

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

Programming

NumPy Arrays

NumPy arrays are multidimensional. The arrays we've seen are simple a special case
of an array with just one axis.

e axes: In Numpy, dimensions are often called axes.

e rank: The number of axes in an ndarray (given by ndim attribute).

e length: The number of elements in a given axis of an ndarray.

e shape: The size of the array in each axis/dimension (represented as a tuple).

e size: The total number of elements in the array in all axes.

e itemsize: The size in bytes of each element in the array. (Can be specified in the
constructor.)

e data: The buffer containing the actual elements. Generally not accessed directly.

Source: Python Data Science Handbook, Jake VanderPlas

< Programming

Multidimensional NumPy Arrays

numpy np
md = np.array([[1, 2, 31, [4, 5,
md [

md [
array ([

mdf :
array ([

md [
array ([

Source: Python Data Science Handbook, Jake VanderPlas

< Programming

Creating NumPy Arrays

Create multidimensional arrays of zeros or ones.

numpy
np.zeros([4,

array ([['

4

4

np.énes([-
array ([

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas
Programming

Creating NumPy Arrays

Create multidimensional array of a single arbitrary value

.14

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

fi Programming

Creating NumPy Arrays

Create an array of a linear sequence, stepping by a given value.

numpy
np.arange (0,
array ([0, 2, 4,

numpy
np.linspace(
array ([’

.15

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

< Programming

Creating NumPy Arrays

Create an array of uniformly-distributed random values between 0 and 1.

Create an array of normally-distributed random values with mean 0 and stdev 1

Source: Python Data Science Handbook, Jake VanderPlas

Programming

Creating NumPy Arrays

Create an n x n identity matrix

Source: Python Data Science Handbook, Jake VanderPlas

Programming

NumPy Array Attributes

Source: Python Data Science Handbook, Jake VanderPlas

< Programming

Reshaping NumPy Arrays

numpy np
a = np.array([range(4), range(
a
arraY([[4 4 4

[4 4 4
a.reshape(4, 2)

array([I 1,
1,
1,
11)

Source: Python Data Science Handbook, Jake VanderPlas

< Programming

Reshaping NumPy Arrays

Transpose of ndarray

numpy np
a = np.array([range(4), range(4, 8)])

a
array ([r 2y 3]y

r 111)

1,
1,
1,
11)

Source: Python Data Science Handbook, Jake VanderPlas

< Programming

Reshaping NumPy Arrays

Modify in place using resize. No return value.

numpy np
a = np.array([range(4), range(4, 8)])

a
array([([0, 1, 2, 3],

[4, 5, 6, 7]1)

a.resize(4, 2)

1,
1,
1,
11)

Source: Python Data Science Handbook, Jake VanderPlas

Programming
Concatenate, Stack NumPy Arrays

numpy
X np.array([1,

)

]
y np.array([4, 5, 6])
)

np.concatenate([x, V]

array([(1l, 2, 3, 4, 5, 6])
np.vstack([x, V])
array([[1l, 2, 3],

[2, 5, 6]])
np.hstack([x, V])

array([l, 2, 3, 4, 5, 6])

Source: Python Data Science Handbook, Jake VanderPlas

e8| Vit;
o= NPy
[1] entia|latur
; .
5 ! !Ei \ b r r

Split NumPy Arrays

grid = np.arange(1l6).reshape ((
grid
array ([[1,
1,

1,

' 11)
er = np.vsplit(grid, [2])

upper, low
upper
array([[0, 1, 2, 3],

[4, 5>/ 6, 7]])

lower
array([[8,

< Programming

Split NumPy Arrays

.arange(16).reshape((4, 4))

grid
array ([[1,
1,

1,

/ 11)
np.hsplit(grid, [2])

left, ' =
left
array ([[

Source: Python Data Science Handbook, Jake VanderPlas

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

Programming

Operations on NumPy Arrays

NumPy provides operations optimized for computation on arrays of data.

"The key to making it fast is to use vectorized operations, generally implemented
through NumPy's universal functions (ufuncs)."

3.25

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

A Programming

Operations on NumPy Arrays

Python's flexibility comes with costs. Python has a reputation for slowness in some
contexts. Other implementations of the Python interpreter attempt to overcome
some of the default implementation's shortcomings (e.g., Cython, PyPy, Numba).

"The relative sluggishness of Python generally manifests itself in situations where
many small operations are being repeated—for instance, looping over arrays to
operate on each element."

"It turns out that the bottleneck... is not the operations themselves, but the type-
checking and function dispatches that CPython must to at each cycle of the loop."

(This is where compiled code has an advantage.)

3.26

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

Programming

Operations on NumPy Arrays

NumPy provides vectorized operations via ufuncs as an alternative and a way to
circumvent bottlenecks of this natures.

Ufuncs' "main purpose is to quickly execute repeated operations on values in
NumPy arrays. They are always more efficient than their pure Python loop
counterparts, and gain a larger advantage as the arrays grow larger.

Vectorized operations: "Designed to push the loop into the compiled layer that
underlies NumPy, leading to much faster execution."

3.27

Source: Python Data Science Handbook, Jake VanderPlas

< Programming

Array Arithmetic

UFuncs rely on Python's native arithmetic operators. Both unary and binary.

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

Programming

Array Arithmetic

Operations may be combined in a single expression

3.29

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

fi Programming

Array Arithmetic

Operator |ufunc

Arithmetic operators are

+ np.add

wrappers around NumPy
- np.subtract

functions: _
- np.negative
* np.multiply
/ np.divide
// np.floor_divide
*x np.power

% np.mod

3.30

Source: Python Data Science Handbook, Jake VanderPlas

Programming
Additional UFuncs

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

Programming

Additional UFuncs

More available in scipy.special

3.32

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas
Programming

Aggregation Functions

NumPy has fast, built-in aggregation functions.

3.

33

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

Programming

Operations on NumPy Arrays

Broadcasting

Binary operations on arrays of the same size are performed element-wise.
Broadcasting allows us to perform binary operations on arrays of different sizes. We
can think of the operation "broadcasting" the smaller array across the larger array.

We saw this with scalars in the first examples of binary operations on ndarrays.
(Think of a scalar as a zero-dimensional array.)

3.34

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas
&y Programming

Operations on NumPy Arrays
Broadcasting

a = np.arange(4) The smaller array, a is being

a stretched or broadcast over the larger

array([0, 1, 2, 3]) array, b's second dimension to match
b = np.ones((3,

. its shape.
array ([[

3.35

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

/) Programming

Operations on NumPy Arrays

Broadcasting

np. arange(3)

Note: No extra memory is allocated.

3.36

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

Programming

Operations on NumPy Arrays

Broadcasting

np. ones((3, 3))+np.arange(3)

Note: No extra memory is allocated.

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

< Programming

Operations on NumPy Arrays

Broadcasting

np. ones((3, 1))+np.arange(3)

Note: No extra memory is allocated.

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

< Programming

Rules of Broadcasting

Rule 1:

If two arrays differ in their number of dimensions, the shape of the one with fewer
dimensions is padded with ones on its leading (left) side.

Rule 2;

If the shape of the two arrays does not match in any dimension, the array with shape
equal to 1 in that dimension is stretched to match the other shape.

Rule 3:
If in any dimension the sizes disagree and neither is equal to 1, an error is raised.

3.39

Source: Python Data Science Handbook, Jake VanderPlas

Programming

Comparison Operators as UFuncs

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

Programming

Comparison Operators as UFuncs

Operator [UFunc

== np.equal

1= np.not_equal

< np.less
<= np.less_equal
> np.greater

>= np.greater_equal

3.4

Source: Python Data Science Handbook, Jake VanderPlas

Programming

Any and All

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas
Programming

Boolean Operators

With Python's bitwise logic operators (&, |, A, ~), we can create more complex
Boolean expressions.

3.43

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

Programming

Boolean Logical Operators as UFuncs

Operator |UFunc We don't use the and and or keywords

& np.bitwise_and because they will effectively evaluate the truth
| np.bitwise_or or falsehood of the entire object. Instead, we're
= interested in the bits within each object. We're

performing multiple Boolean evaluations on
~ np.bitwise_not the content of the object.

A np.bitwise_xor

3.44

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

Programming

Boolean Arrays as Masks

Using Boolean arrays as masks to select particular subsets of an array can be a
useful pattern.

3.45

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas
&y Programming

Fancy Indexing

With fancy indexing, we can pass an array or list into square brackets to sample

the original array. The shape of the result reflects the shape of the index arrays,
rather than the shape of the array being indexed.

a = np.random.randint (
a

arraY([4 4 4
indexes = |
a[indexes]

4

array([93, ¥ 1)
indexes2 = np.array([[
a[indexes2]

array([[48, 1,

[12, 11)

3.46

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

fi Programming

Sorting Arrays

Python has built-in sort and sorted functions. NumPy's np.sort function is much
more efficient. Uses O(n*Ig n) quicksort, but mergesort and heapsort are available.

3.47

Source: Python Data Science Handbook, Jake VanderPlas

< Programming

Sorting Arrays Along Rows and Columns

Python has built-in sort and sorted functions. NumPy's np.sort function is much
more efficient. Uses O(n*Ig n) quicksort, but mergesort and heapsort are available.

Lamont Samuels

Source: Python Data Science Handbook, Jake VanderPlas

< Programming

Structured Arrays

NumPy's structured arrays or record arrays provide efficient storage for
compound, heterogeneous data.

Source: Python Data Science Handbook, Jake VanderPlas

s Programming

Structured Arrays

NumPy's structured arrays or record arrays provide efficient storage for
compound, heterogeneous data.

name = [’
homeruns = | , , ,
age:[’ ’ ’]
X = np.zeros(4, dtype={
] = name
] = homeruns
] = age

34 Python
<y Programming

Python Scientific
Stack

Python
Programming

Pandas

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

Programming

Pandas

Pandas builds on the structured data tools available in NumPy by giving us a data
structure called a DataFrame, which acts as a multidimensional array with row and
column labels, heterogeneous types, and/or missing data.

"As well as offering a convenient storage interface for labeled data, Pandas
implements a number of powerful data operations familiar to users of both
database frameworks and spreadsheet programs."

pandas pd

4.

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

Programming
Pandas: Series Object

A Series is a one-dimensional array of indexed data. It wraps:

e A sequence of values (accessible via values attribute).
e A sequence of indices (accessible via index attribute).

pandas pd
data = pd.Series(]|
data

dtype: floaté64
data.values

array (['
data.index

RangelIndex(start=

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

< Programming

Pandas: Series Object

Data is accessible by offset (index) in square brackets.

data = pd.Series(]|
data

dtype: float64
data[1l]

data[l:3]

dtype: float64

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

s Programming

Pandas: Series Object

We may consider a Pandas Series object as a generalized NumPy array. Whereas a
NumPy array has an implicit integer index, a Pandas Series has an explicit index
that may consist of values of any type.

data = pd.Series(np.linspace(
indeX: [4 (4 4])
data

dtype: float64
datal]

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

< Programming

Pandas: Series Object

There exists no requirement that an index be sequential.

data = pd.Series(np.linspace(
indeX: [4 4 4])
data

dtype: float64
data[5]

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

Programming

Pandas: Series Object

We may also consider a Pandas Series a specialized dictionary. Whereas a Python
dict maps a set of arbitrary keys to a set of arbitrary values, a Series maps a set of
typed keys to a set of typed values.

"This typing is important: just as the type-specific compiled code behind a NumPy
array makes it more efficient than a Python list for certain operations, the type of
information of a Pandas Series makes it more efficient than a Python dictionary for
certain operations.”

4.8

Source: Python Data Science Handbook, Jake VanderPlas

Programming

Pandas: Series Object

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas
Programming

Pandas: Series Object

The Series supports array-style operations, like slicing:

.10

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

Programming

Pandas: Series Object

Pandas Series can be created from

e Lists, NumPy arrays: index defaults to sequence of integers.
e Dictionaries: index defaults to sorted keys of the dictionary.
e Scalars: value repeated to fill given index.

pd.Series (5, index=]

dtype: inté64

.1

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

Programming

Pandas: DataFrame Object

"If a Series is an analog of a one-dimensional array with flexible indices, a
DataFrame is an analog of a two-dimensional array with both flexible row indices
and flexible column names."

"Just as you might think of a two-dimensional array as an ordered sequence of
aligned one-dimensional columns, you can think of a DataFrame as a sequence of
aligned Series objects. Here, by 'aligned' we mean that they share the same index."

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

| Vit
o f‘]a?%?i e}:?;‘,
[L] entia|latur [
;%;@ °
d b
&7 Programming

Pandas: DataFrame Object

b5 P th o n Source: Python Data Science Handbook, Jake VanderPlas
ey Y

“%@ Programming
Pandas: DataFrame Object

A DataFrame has attributes:

e index: An Index object. The values are the row/index labels.
e columns: An index object. The values are the column labels.

cubs
batting average home runs
Bryant
Contreras
Rizzo

Schwarber
cubs.index
Index (| .
cubs.columns
Index ([

4 .14

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

i Programming

Pandas: DataFrame Object

Another way to frame our understanding of the DataFrame object is to consider it
a specialized dictionary. Whereas a dictionary maps arbitrary keys to arbitrary
values, a DataFrame maps a column name to a Series of column data.

cubs cubs|
batting average home runs Bryant

Bryant Contreras
Contreras Rizzo

Rizzo Schwarber
Schwarber Name: home runs, dtype: inté64

cubs|
Bryant
Contreras
Rizzo
Schwarber
Name: batting average, dtype: floaté64

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

Programming

Pandas: DataFrame Object

Because the __getitem__ behavior of a DataFrame returns a column, our
conceptualization of the DataFrame as a two-dimensional ndarray may be
misleading. For this reason, the specialized dictionary conceptualization is
preferable.

Source: Python Data Science Handbook, Jake VanderPlas

< Programming

Data Indexing and Selection

data = pd.Series(np.linspace(
index=|[,
data

type: floatb64

datal]

data[2]

Source: Python Data Science Handbook, Jake VanderPlas

Programming

Data Indexing and Selection: Series

Source: Python Data Science Handbook, Jake VanderPlas

< Programming

Data Indexers: Series

data = pd.Series(np.linspace(

data.loc]]

data.loc]

dtype: float64
data.iloc[1]

data.iloc]
b
C
dtype: float64

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

| Vit
o f‘]a?%?i e}:?;‘,
[L] entia|latur [
;%;@ °
d b
&7 Programming

Data Selection: DataFrames

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

| Vit
o f‘]a?%?i e}:?;‘,
[L] entia|latur [
;%;@ °
d b
&7 Programming

Data Selection: DataFrames

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

| Vit
o f‘]a?%?i e}:?;‘,
[L] entia|latur [
;%;@ °
d b
&7 Programming

Data Selection: DataFrames

Source: Python Data Science Handbook, Jake VanderPlas

Programming
Data Indexing: DataFrames

cubs.loc| cubs.loc|
at bats Rizzo
hits Zobrist
avg Name: hits, dtype: inté4
Name: Rizzo, dtype: floaté64 cubs.loc]

cubs.loc| ; at bats hits
Rizzo

cubs.iloc[0] Zobrist
at bats cubs.iloc[0:2]
hits at bats hits
avg Baez
Name: Baez, dtype: float64 Bryant
cubs.iloc[0, 0] cubs.iloc]
hits
Baez
Bryant

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas
Programming

Data Indexing: DataFrames

.24

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

Programming

DataFrame Operations

Pandas DataFrame objects inherit efficient element-wise operations from NumPy.
Additionally, DataFrame objects "include a couple of useful twists":

For unary operations, ... ufuncs will preserve index and column labels in the output.

df = pd.DataFrame(np.random.randint (
columns=][, ,
df

np.sin(df * np.pi / 4)
A

.25

Python
Programming

Creation of DataFrame from File

34 Python
<y Programming

Python Scientific
Stack

34 Python
Programming

matplotlib

Pyth o n Source: Python Data Science Handbook, Jake VanderPlas

< Programming

Matplotlib

"Matplotlib is a multiplatform data visualization library built on NumPy arrays,
and designed to work with the broader SciPy stack. It was conceived by John

Hunter in 2002, originally as a patch to IPython for creating interactive MATLAB-
style plotting via gnuplot from the IPython command line."

matplotlib mpl
matplotlib.pyplot plt

5.3

Python
Programming

Sources

e [earning Python, Mark Lutz, O'Reilly
e Data Science Handbook, Jake VanderPlas, O'Reilly

