
Homework 2

MPCS 51042 – Python Programming

Due: April 23rd 2019, 11:59 pm

Initial Setup

Make sure to perform a pull upstream inside your repository. This will grab the distribution code for hw2.
The command is the following:

$ git pull upstream master

Style Guide

For this homework and all future homework assignments, we will follow the style guide used by the un-
dergraduate Python course. It’s located here: https://classes.cs.uchicago.edu/archive/2018/fall/

12100-1/style-guide/index.html

Usage Statement

A usage statement is a printed summary of how to invoke a program that runs in the Terminal program.
It includes a description of all the possible command-line arguments that the program might take in. The
usage statement is normally invoked in two ways:

1. By a specific command-line argument (e.g. -help or -h)

2. When the user enters the wrong number of command-line arguments (not enough or too many) or
invalid command-line arguments.

Here’s the usage statement for the git command:

$ git --help

usage: git [--version] [--help] [-C <path>] [-c <name>=<value>]

[--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]

[-p | --paginate | -P | --no-pager] [--no-replace-objects] [--bare]

[--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]

<command> [<args>]

... Not showing the full usage statement it's very long...

Items within [..] are optional command-line arguments that are not required to be provided and <..> are
required command-line arguments necessary to run the program.

You will write a usage statements in the first problem.

1

https://classes.cs.uchicago.edu/archive/2018/fall/12100-1/style-guide/index.html
https://classes.cs.uchicago.edu/archive/2018/fall/12100-1/style-guide/index.html

Problem 1

You will implement a program with the following usage statement:

usage: problem1 <command>

Command

up Print the entered integers in ascending order

down Print the entered integers in descending order

same Print the entered integers in the same order they were given.

Write a program that continually prompts a user to input integers until the user types <quit>. Based on
the command given on the command line, the program will,

1. up - The program prints the entered integers in ascending order, along with the integer’s original
position (zero-based) among the numbers input by the user, in parentheses.

2. down - The program prints the entered integers in descending order, along with the integer’s original
position (zero-based) among the numbers input by the user, in parentheses.

3. same - The program prints the entered integers in same order they were given when entered along with
the integer’s original position (zero-based) among the numbers input by the user, in parentheses.

The program prints the usage statement if

1. the wrong number of command-line arguments (not enough or too many)

2. Incorrect command is provided (i.e., anything other than up or down or same

Test Cases input/output:

$ ipython problem1.py up

Please enter an integer: 3

Please enter an integer: -15

Please enter an integer: 1

Please enter an integer: <quit>

-15 (1)

1 (2)

3 (0)

The first value in our sorted collection of input values is -15. It was the second number (i.e., index 1) input.
So we print “-15 (1)”. The next value in our sorted collection is 1, the last (i.e., index 2) value input by the
user. So we print “1 (2)”. Finally, we print “3 (0)” because the highest value input was the first value input
by the user (i.e., index 0).

$ ipython problem1.py down

Please enter an integer: 3

Please enter an integer: -15

Please enter an integer: 1

Please enter an integer: <quit>

3 (0)

1 (2)

-15 (1)

2

$ ipython problem1.py

usage: problem1 <command>

Command

up Print the entered integers in ascending order

down Print the entered integers in descending order

same Print the entered integers in the same order they were given.

$ ipython problem1.py blah foo blah

usage: problem1 <command>

Command

up Print the entered integers in ascending order

down Print the entered integers in descending order

same Print the entered integers in the same order they were given.

Assumptions/Requirements:

• You may assume that the user does not submit any non-integer values.

• Assume the values will be unique (i.e., no duplicates).

• You cannot use any sorting functions that python provides.

Place your solution inside the hw2/problem1/problem1.py file.

Problem 2

A 2014 article in the Chicago Tribune (http://articles.chicagotribune.com/2014-02-20/news/ct-emanuel-city-employee-scofflaws-met-20140220_
1_city-workers-chicago-public-city-employee-debt) highlighted how Chicago mayor Rahm Emanuel
indicated to city employees that they must pay any outstanding debt to the city (parking tickets, wa-
ter bills, etc.) or face possible suspension/firing. In this problem, you will assess how successful (or
not) mayor Emanuel has been in getting city employees to pay outstanding debt by analyzing open data
https://data.cityofchicago.org/ provided by the City of Chicago. You are provided a comma-separated
value file hw2/problem2/indebtedness.csv.

Your task is to write a program that saves the total amount of debt owed by city employees for each date
shown in the csv file to a file named total debt.txt. The output to the file must be sorted by date, starting
from the oldest entries (‘10/14/2011‘) and continuing to the present. The total amount owed should be
displayed rounded to the nearest dollar with thousands separated by commas.

Small sample of the beginning information that will be saved to the total debt.txt file:

10/14/2011: 2,553,610

10/21/2011: 2,326,302

10/28/2011: 2,132,597

11/04/2011: 1,950,591

11/11/2011: 1,810,242

...

The only package you may use for this problem is datetime. You may find the following code helpful:

3

http://articles.chicagotribune.com/2014-02-20/news/ct-emanuel-city-employee-scofflaws-met-20140220_1_city-workers-chicago-public-city-employee-debt
http://articles.chicagotribune.com/2014-02-20/news/ct-emanuel-city-employee-scofflaws-met-20140220_1_city-workers-chicago-public-city-employee-debt
https://data.cityofchicago.org/

import datetime

my_dates = ['06/24/2017', '03/24/2018', '11/11/2019', '02/11/2017']

my_dates.sort(key=lambda date: datetime.datetime.strptime(date, "%m/%d/%Y"))

print(my_dates)

Place your solution inside the hw2/problem2/problem2.py file.

Problem 3

Write a function that joins together single components of a path to produce a full path with directories
separate by slashes. For example, it should operate in the following manner:

$: ipython

In [1]: import problem3

In [2]: problem3.full_paths(['usr', ['lib', 'bin'], 'config', ['x', 'y', 'z']])

Out[2]:['/usr/lib/config/x',

'/usr/lib/config/y',

'/usr/lib/config/z',

'/usr/bin/config/x',

'/usr/bin/config/y',

'/usr/bin/config/z']

In [3]: problem3.full_paths(['codes', ['python', 'c', 'c++'], ['Makefile']], base_path='/home/user/')

Out[3]:['/home/user/codes/python/Makefile',

'/home/user/codes/c/Makefile',

'/home/user/codes/c++/Makefile']

The function definition should look as follows:

def full_paths(path_components, base_path='/'):

...

The path_components argument accepts an iterable in which each item is either a list of strings or a single
string. Each item in path_components represents a level in the directory hierarchy. The function should
return every combination of items from each level. With the path_components list, a string and a list
containing a single string should produce equivalent results as the second example above demonstrates. The
base_path argument is a prefix that is added to every string that is returned. The function should return
a list of all the path combinations (a list of strings). Order does matter. The function must maintain the
order of how they are position in the original list.

If you need to check whether a variable is iterable, the ”Pythonic” way to do this is

from collections.abc import Iterable

if isinstance(x, Iterable):

...

However, note that strings are iterable too! You are allowed to use functionality from the standard library
for this problem.

Assumptions/Requirements:

4

• You may assume the argument path_components is either a string or a list of strings.

• You don’t have to worry about nested lists, (e.g., ['codes', ['python', ['c','c++'],'java'], ['Makefile']])

Place your solution inside the hw2/problem3/problem3.py file.

Problem 4

Nowadays we take word completion for granted. Our phones, text editors, and word processing programs
all give us suggestions for how to complete words as we type based on the letters typed so far. These hints
help speed up user input and eliminate common typographical mistakes (but can also be frustrating when
the tool insists on completing a word that you don’t want completed).

You will implement two functions that such tools might use to provide command completion. The first
function, fill_completions, will construct a dictionary designed to permit easy calculation of possible
word completions. A problem for any such function is what vocabulary, or set of words, to allow completion
on. Because the vocabulary you want may depend on the domain a tool is used in, you will provide
fill_completions with a representative sample of documents from which it will build the completions
dictionary. The second function, find_completions, will return the set of possible completions for a start
of any word in the vocabulary (or the empty set if there are none). In addition to these two functions, you
will implement a simple main program to use for testing your functions.

Specifications

• fill_completions(fd) returns a dictionary. This function takes as input an opened file. It loops
through each line in the file, splitting the lines into individual words (separated by whitespace) and
builds a dictionary:

– The keys of the dictionary are tuples of the form (n, l) for a non-negative integer n and a
lowercase letter l.

– The value associated with key (n, l) is the set of words in the file that contain the letter l at
position n. For simplicity, all vocabulary words are converted to lower case. For example, if the file
contains the word "Python" and c_dict is the returned dictionary, then the sets c_dict[0, "p"],
c_dict[1, "y"], c_dict[2, "t"], c_dict[3, "h"], c_dict[4, "o"], and c_dict[5, "n"] all
contain the word "python".

– Words are stripped of leading and trailing punctuation.

– Words containing non-alphabetic characters are ignored, as are words of length 1 (since there is
no reason to complete the latter).

• find_completions(prefix, c_dict) returns a set of strings. This function takes a prefix of a vocab-
ulary word and a completions dictionary of the form described above. It returns the set of vocabulary
words in the completions dictionary, if any, that complete the prefix. It the prefix cannot be completed
to any vocabulary words, the function returns an empty set.

• main(), the test driver:

1. Opens the file named "articles.txt". This file contains the text of recent articles pulled from
BBC.

2. Calls fill_completions to fill out a completions dictionary using this file.

3. Repeatedly prompts the user for a prefix to complete.

4. Prints each word from the set of words that can complete the given prefix (one per line). If no
completions are possible, it should just print "No completions".

5. Quit if the user enters the word <quit>.

5

• To call the main() function, put a block at the end of your script with the follow lines (we will discuss
this technique later on in the class). This allows your script to run when executed from a command
line.

if __name__ == '__main__':

main()

Test Cases input/output

$ ipython problem4.py

Enter prefix: za

zara

zakharova

zapad

Enter prefix: lum

lumley

lump

lumet

Enter prefix: multis

No completions

Enter prefix: <quit>

Assumptions/Requirements:

• The output order in this problem does not matter.

Place your solution inside the hw2/problem4/problem4.py file.

6

