
Final Project

MPCS 51042 – Python Programming

Due: June 10th 2020 @ 11:59pm

Initial Setup

Make sure to perform a pull upstream inside your repository. This will grab the distribution code for the
final proj. The command is the following:

$ git pull upstream master

Style Guide

For this homework and all future homework assignments, we will follow the style guide used by the un-
dergraduate Python course. It’s located here: https://classes.cs.uchicago.edu/archive/2018/fall/

12100-1/style-guide/index.html

Introduction

In this final project, you will develop a modeling system using Markov Models. You don’t have to understand
them completely (or at all) for this assignment but here are some helpful slides if you are curious:

http://cecas.clemson.edu/~ahoover/ece854/refs/Ramos-Intro-HMM.pdf

Markov models can be used to capture the statistical relationships present in a language like English.
These models allow us to go beyond simplistic observations, like the frequency with which specific letters or
words appear in a language, and instead to capture the relationships between words or letters in sequences.
As a result, we can not only appreciate that the letter “q” appears in text at a certain rate, but also that it
is virtually always followed by a “u.” Similarly, “to be” is a much more likely word sequence than “to is.”

One application of Markov models is in analyzing actual text and assessing the likelihood that a particular
person uttered it. That is one objective of this assignment.

The other objective for this assignment is to create a hash tables module. Most of you should be familiar
with Hash tables, which are data structures that store associations between keys and values (exactly like
dictionaries in Python) and provide an efficient means of looking up the value associated with a given key.
Hash tables find a desired entry rapidly by limiting the set of places where it can be. They avoid “hot spots,”
even with data that might otherwise all seem to belong in the same place, by dispersing the data through
hashing.

Apart from developing an appreciation of how hashing and hash tables work, you will also be better
prepared if ever you need to write your own hash table in the future. For instance, you may use a language
(like C) that does not feature a built-in hash table. Or, the hash table that is used by a language, like
Python, may interact poorly with your particular data, obligating you to design a custom-tailored one.
After completing this assignment, you should consider hash tables to be in your programming repertoire.

1

https://classes.cs.uchicago.edu/archive/2018/fall/12100-1/style-guide/index.html
https://classes.cs.uchicago.edu/archive/2018/fall/12100-1/style-guide/index.html
http://cecas.clemson.edu/~ahoover/ece854/refs/Ramos-Intro-HMM.pdf


Hash tables and Linear Probing

In the interest of building and testing code one component at a time, you will start by building a hash table.
Once you have gotten this module up and running, you will use it in your construction of a Markov model
for speaker attribution.

There are different types of hash tables; for this assignment, we will use the type that is implemented
with linear probing.

Hashtable Class

Please look at final_proj/hash_table.py. You will modify this file and must implement a hash table
using the linear probing algorithm. The class Hashtable must have:

• It inherits the Map abstract base class (final_proj/map.py) and implements all abstract methods
specified in its definition.

• Assume all keys are strings.

• It defines an __init__(self,capacity,defVal,loadfactor,growthFactor) method that takes in
the following:

– capacity - the initial number of cells to use. It must create a list of empty cells with the specified
length. You can assume the value passed in for the initial number of cells will be greater than 0.

– defVal- a value to return when looking up a key that has not been inserted. (see prior section
for an example)

– loadfactor - a floating point number ((0, 1]). If the fraction of occupied cells grows beyond
the loadfactor after an update, then you must perform a rehashing of the table. Rehashing is
described below.

– growthFactor - an integer greater than or 1 that represents how much to grow the table by when
rehashing. For example, if growthFactor = 2 then the size of the hash table will double each
time we rehash.

• It must use a single Python list to hold the key and value as tuple in the table. Tuple can contain
any additional components as needed.

• A _hash(self,key) method takes in a string and returns a hash value. Use the standard string
hashing function (i.e., horners method) discussed in lecture.

• Rehashing: A hash table built on linear probing does not have unlimited capacity, since each cell
can only contain a single value and there are a fixed number of cells. But, we do not want to have
to anticipate how many cells might be used for a given hash table in advance and hard-code that
number in for the capacity of the hash table. Therefore, we will take the following approach: the cell
capacity passed into the __init__ will represent the initial size of the table. If the fraction of occupied
cells grows beyond loadfactor (i.e., parameter passed into loadfactor) after an update, then we will
perform an operation called rehashing: We will expand the size of our hash table, and migrate all the
data into their proper locations in the newly-expanded hash table (i.e., each key-value pair is hashed
again, with the hash function now considering the new size of the table). We will grow the size of the
table by growthFactor (i.e., parameter passed into __init__) ; for instance, growthFactor = 2, the
size of the hash table will double each time it becomes too full.

• Deletion: deleting an item in a hash table that uses linear probing is tricky. Simply removing the
key-value pair could potentially invalidate the entire table. For our implementation, we will “logically”
delete the key-value pairings. This means that you should have marker for each key-value pair that
indicates whether or not it’s been “deleted” (e.g., having a third component of the tuple to represent the
marker). If the marker is True then the key-value pair is still inside the table; otherwise a False marker
says that the pair was deleted at some point. You should think about how this helps with implementing

2



your insertion and lookup methods... You will “physically” remove the key-value pairings that have
been “logically” removed during rehashing.

• The syntax to add, update, delete, etc. are the same as a Python dictionary. You should be able to
know how to modify and access the data inside the Hashtable instances.

• You are free to implement additional properties, attributes, and methods as needed to implement this
class.

• I have provided you with a pytest file, final_proj/test_hash_table.py that you can use to verify
your implementation is correct.

A Speaker Recognition System

Markov models are used significantly in speech recognition systems, and used heavily in the domains of
natural language processing, machine learning, and AI.

Markov model defines a probabilistic mechanism for randomly generating sequences over some alphabet
of symbols. A k-th order Markov model tracks the last k letters as the context for the present letter. We will
build a module called Markov that will work for any positive value of k provided. This module, naturally,

3



resides in markov.py.

While we use the term “letter,” we will actually work with all characters, whether they be letters, digits,
spaces, or punctuation, and will distinguish between upper- and lower-case letters.

Building the Markov Model (Learning Algorithm)

Given a string of text from an unidentified speaker, we will use a Markov model for a known speaker to
assess the likelihood that the text was uttered by that speaker. Thus, the first step is building a Markov
Model on known text from a speaker. For this assignment, the Markov Model will be represented as a
Hashtable (Note: You will not use all the methods you defined in its implementation). You must use
your implementation and not the built-in dictionaries from Python! You will be given an integer
value of k at the start of the program. Each key-value pairing inside the table contains string keys with
length k and k + 1 and values set to the number of times those keys appeared in the text. For example, let’s
say you have a file called speakerA.txt that contains the following text:

This_is_.

Note: You consider all characters in the text. Regardless if the characters are punctuation, special
characters, whitespace characters, etc., all characters in the text are considered valid. Even if the text does
not make any sense, especially in this case, you will still generate a Markov Model.

We will use this text (i.e., "This_is_.") to create a Markov Model for Speaker A. The algorithm proceeds
as follows:

Starting from the beginning of the text for some known speaker:

1. For each character in the known text, you generate a string of length k that includes the current
character plus k−1 succeeding characters (Note: The model actually works by finding the k preceding
letters but our way works too because we are using a wrap-around effect.).

2. For each character in the known text, you generate a string of length k + 1 that includes the current
character plus k succeeding characters.

3. For certain characters, they will not have k or k + 1 succeeding characters. For example, what are
the succeeding characters for the character '.' if k = 2 in the speakerA.txt text? We will wrap
around: we will think of the string circularly, and glue the beginning of the string on to the end to
provide a source of the needed context. For instance, if k = 2, and we have the string "ABCD", then
the letters of context for 'D' will be "A" (for k − 1) and "AB" (for k).

Below is a diagram of all of the k and k + 1 length strings that are generated from the speakerA.txt
file given that k = 2:

4



The Markov Model (i.e., Hashtable) will contain the number of times those k and k + 1 were generated
via the known text. Thus, for the speakerA.txt file, the Markov Model generated will be the following:

5



Most of the k and k+1 strings were only generated once but some such as "is" were generated by processing
the character at index 0 and index 5.

Determining the likelihood of unidentified text (Testing Algorithm)

As we stated earlier, given a string of text from an unidentified speaker, we will use the Markov model for a
known speaker to assess the likelihood that the text was uttered by that speaker. Likelihood, in this context,
is the probability of the model generating the unknown sequence. If we have built models for different
speakers, then we will have likelihood values for each, and will choose the speaker with the
highest likelihood as the probable source.

These probabilities can be very small, since they take into account every possible phrase of a certain
length that a speaker could have uttered. Therefore, we expect that all likelihoods are low in an absolute
sense, but will still find their relative comparisons to be meaningful. Very small numbers are problematic,
however, because they tax the precision available for floating-point values. The solution we will adopt for
this problem is to use log probabilities instead of the probabilities themselves. This way, even a very
small number is represented by a negative value in the range between zero and, for instance, -20. If our log

6



probabilities are negative and we want to determine which probability is more likely, will the greater number
(the one closer to zero) represent the higher or lower likelihood, based on how logarithms work?

Note that when we use the Prelude’s math.log function (i.e., we will calculate natural logarithms). Your
code should use this base for its logarithms. While any base would suffice to ameliorate our real number
precision problem, we will be comparing your results to the results from our implementation, which itself
uses natural logs.

The process of determining likelihood given a model is similar to the initial steps of building the Markov
Model in the previous section.

Starting from the beginning of the text for some unknown speaker:

1. For each character in the unknown text, you generate a string of length k that includes the current
character plus k − 1 succeeding characters.

2. For each character in the known text, you generate a string of length k + 1 that includes the current
character plus k succeeding characters.

3. For certain characters, they will not have k or k+1 succeeding characters. You will use the same wrap
around mechanism as described previously.

4. We need to keep in mind that we are constructing the model with one set of text and using it to
evaluate other text. The specific letter sequences that appear in that new text are not necessarily
guaranteed ever to have appeared in the original text. Consequently, we are at risk of dividing by zero.

It turns out that there is a theoretically-justifiable solution to this issue, called Laplace smoothing.
We modify the simple equation above by adding to the denominator the number of unique characters
that appeared in the original text we used for modeling. For instance, if every letter in the alphabet
appeared in the text, we add 26. (In practice, the number is likely to be greater, because we distinguish
between upper- and lower-case letters, and consider spaces, digits, and punctuation as well.) Because
we have added this constant to the denominator, it will never be zero. Next, we must compensate for
the fact that we have modified the denominator; a theoretically sound way to balance this is to add
one to the numerator. Symbolically, if N is the number of times we have observed the k succeeding
letters and M is the number of times we have observed those letters followed by the present letter, and
S is the size of the ”alphabet” of possible characters, then our probability is :math:

log((M + 1)/(N + S))

For example, lets say you have file called speakerC.txt (i.e., the unidentified text):

This

Calculating the total likelihood will be done in the following way using the model we built from the
speakerA.txt text:

7



Note:

• When we say “Model(K)” we are looking at the hash table inside the model and retrieving the counts
for that string.

• S is the number of unique characters that we encountered when building the model. When building
the model you need to create a set of all the unqiue characters.

Markov Class

Inside the final_proj/markov.py, you will a implement the Markov class with the following instance meth-
ods:

1. An __init__ method that takes in a value of “k” and a string of text to create the model. It will create
one or more hash tables with HASH_CELLS many cells; we have provided this constant to be a suitable
number that is a good starting size for your hash tables, although they will have to grow significantly
to accommodate all the statistics you will learn as you scan over the sample text we have provided.

2. log_probability is a method that takes in a new string and returns the log probability that the
modeled speaker uttered it, using the approach described in a prior section.

Inside the markove.py file define the following functions:

• identify_speaker(speech1, speech2, speech3, order) - This function is called by the main func-
tion with three strings (i.e., (speech1, speech2, speech3 and a value of k (i.e., order). You must
learn models for the speakers that uttered the first two strings, calculate the normalized log probabil-
ities that those two speakers uttered the third string, and return these two probabilities in a tuple (with
the first entry being the probability of the first speaker). Finally, you must compare the probabilities
and place in the third slot of your returned tuple, a conclusion of which speaker was most likely. This
conclusion should be either the string "A" or "B".

While the log_probability function yields the likelihood that a particular speaker uttered a specified
string of text, this probability may be misleading because it depends upon the length of the string.
Because there are many more possible strings of a greater length, and these probabilities are calculated
across the universe of all possible strings of the same length, we should expect to see significant vari-
ance in these values for different phrases. To reduce this effect, we will divide all of our probabilities
by the length of the string, to yield normalized ones. To be clear, this division does not occur in
log_probability, but rather in identify_speaker. Also, note that we will be calculating log prob-
abilities, under different models, for the same string. Thus, string length differences are not a factor
during a single run of our program. Rather, we choose to normalize in this fashion because we want
outputs for different runs to be more directly comparable when they may pertain to different length
quotes being analyzed.

Note: You can test your implementation of this file by running the pytests inside the final_proj/test_markov
file.

Driver File

For this assignment, You will need to implement a driver for the speaker recognition system inside (final_proj/driver.py).
We have provided a set of files containing text from United States presidential debates from the 2004 and
2008 general elections. In the 2004 election, George W. Bush debated John Kerry; in the 2008 debates,
Barack Obama went up against John McCain. We have provided single files for Bush, Kerry, Obama, and
McCain to use to build models. These files contain all the text uttered by the corresponding candidate from
two debates. We have also provided directories from the third debates of each election year, containing many
files, appropriately labeled, that have remarks made by one of the candidates.

8



Inside the final_proj/driver.py file, define a if __name__ == "__main__" block that reads in three
command-line arguments where the first two file names represent the text files that will be used to build
the two models, and the third file name is that of the file containing text whose speaker we wish to deter-
mine using the Markov approach. The final argument is the order (k) of the Markov models to use, an integer.

Your code should then read in text from the text files and call the the identify_speaker function to
retrieve the log probabilities and conclusion string tuple. Your program will then print out the the log
probabilities and the conclusion as follows:

Speaker A: -2.1670591295191572

Speaker B: -2.2363636778055525

Conclusion: Speaker A is most likely

Here’s a full sample use of calling the program from the terminal window:

$ ipython driver.py speeches/bush1+2.txt speeches/kerry1+2.txt speeches/bush-kerry3/BUSH-0.txt 2

Speaker A: -2.1670591295191572

Speaker B: -2.2363636778055525

Conclusion: Speaker A is most likely

You must also perform command-line argument error checking. The program must take in those three
arguments, otherwise should print the following usage statement (Note: it should be all on one line but I
had to break it into two lines because of the description):

usage: ipython driver.py <file name for speaker A> <file name for speaker B>

<file name of text to identify> <order>

You can assume the command-line arguments given will be valid (i.e., the first two arguments will always
be text files and the last argument will always be an integer).

Your solution should not take more than 10 minutes to run. If it does then you need to think about how
to more efficiently implement certain parts of your program.

Debugging suggestions

A few debugging suggestions:

• Make sure you have chosen the right data structure for the Markov model!

• Check your code for handling the wrap-around carefully. It is a common source of errors.

• Test the code for constructing a Markov model using a very small string, such as “”abcabd”“. Check
your data structure to make sure that you have the right set of keys and the correct counts.

• Make sure you are using the correct value for :math:‘S‘: the number of unique characters that appeared
in the *training* text.

Acknowledgment

This assignment’s text and documentation originated from CAPP 30122 Team @ The University of Chicago.
The original development of the assignment was done by Rob Schapire with contributions from Kevin Wayne.

9


