CS331
Advanced Operating Systems

12:30—1:50 Tu/Th
Instructor: Shan Lu (JCL 343, shanlu@...)

Outline

• An overview of 331
 • Who am I
 • What this class will be about

• Introduce yourself

• A brief history of OS

• Administrative stuff
Who am I

• Shan
 – Research
 • Software reliability & efficiency, parallel & distributed systems, ...
 – Teaching
 • I enjoy discussion
 • We will use chalk board a lot
 • Thanks in advance for your feedback
What this class is about?

• What does operating system do?
What this class is about?

- What does operating system do?

![Diagram showing the components of an operating system: Hardware (CPU, memory, devices), Software (OS: management, protection, communication, interface).]
What this class is about?

• What does operating system do?
 – Management, protection, communication, ...

• What is the scope of software systems?
This class is about ...

- Knowledge about OS and software systems
- System research approaches
- Recent system research topics

No textbook; paper reading
OS Knowledge

• Similar w/ CS230, except that ...

• More emphasis on `research’
 – How did things come out and evolve?
 • What was the driving force
 • Why was this an important problem at that time
 • How was the problem addressed
 • The significance and impact
 – What are/were the alternative solutions?

Hopefully you are interested in history
OS research ideas/approaches

- Common themes
 - What are the criteria for a “good” system?

- Common tricks

- ...
OS research ideas/approaches

- Common themes
 - Performance
 - Complexity
 - Usability
 - Protection and security

- Common tricks
 - Caching
 - Indirection
 - Modularity/abstraction
 - Mechanism vs. policy
 - Hardware support
 - Balance/trade-off

- ...
Am I qualified to take the class?
What do you need to do?

• Paper reading
 • Get knowledge; writing tips; \textbf{taste}
 • Answer questions before class, ask questions in class

• Come to class

• Do a project
 – Proposal
 – Implementation
 – Write-up and presentation
Introduce yourself!

• Name
• Which year are you in?
• Something interesting about yourself
• What do you want to learn from this class?
• What research topic (inside and outside OS) are you interested in?
A brief history of OS (i)

• 1st period (1940’s—1950’s)
 – Machine is very expensive
 • Most things are manual
 – Software
 • No high-level language

Q: was there OS? Why …?
A brief history of OS (i)

• 1st period (1940’s—1950’s)
 – Machine is very expensive
 • Most things are manual
 – Software
 • Library, I/O device, compiler
 • No OS
 • Long software setup time
A brief history of OS (ii)

• **2nd period (1950’s)**
 – Batching system
 • A deck of card/paper-tape at a time
 Q: what does OS do?
 • OS is a loader
 – Handles interrupt, no scheduling

 – Magnetic tape (replaces paper tape)
 • Use separate machine to turn paper-tape to magnetic tape
 – Disk replaces magnetic tape
 • Reading to disk can go together with calculation (spooling)
UNIVAC
A brief history of OS (iii)

• 1960---1970’s
 – `advanced batch OS’
 • Virtual memory
 – Ease programming
 – Atlas [1961] a batch OS with spooling
 • Multi-programming
 – Improve CPU utility
 – THE [1968] 5-job at a time, s/w VM
 – DOS/360 [1966 IBM] 3-job at a time, no VM
 – Time-sharing OS
 • Human interaction becomes more important
 – CTSS [1962], Multics [1965~], Unix [1969]
A brief history of OS (iv)

• 1980’s
 – PC OS
 • Back to single-user and single address-space
 • Pilot [1980 Xerox]
 • PC-DOS, MS-DOS (single task)

• 1990’s--
 – PC OS goes back to old mainframe style
 • Multi-user, multi-task, protection, virtualization
Current OS research

• Complexity
• Reliability & Security
 – Singularity, SELinux, ...
• Scalability
 – Multicore, cloud computing
 – Cellphone, sensor
• Opportunities/challenges from new hardware
 – SSD
 – Sensors
 – Heterogeneity
Administration
A brief overview of our schedule

• 3 lec OS (kernel) organization
• 3 lec Concurrency/Synchronization
• 1 lec Resource management
• 1 lec Virtualization (project proposal due)
• No lecture
• Midterm
• 4 lec FS, Disk
• 2 lec Distributed systems
• 2 lec Reliability, security
• 1 lec Project Presentation
Things you will do (i)

• Paper reading
 – Form a reading group (2~4 people)
 • Let me know if you cannot find partners
 – Read the paper(s) BEFORE every class
 – Submit one review BEFORE every class
 Send to me (shanlu@)
 • At least one question about the paper(s)
 • Answer one or two questions posted on-line
Things you will do (ii)

• Come to class
 – Ask questions
 – Answer questions

• Class website
Things you will do (iii)

• A course project
 – Who 2~4 people group
 – When now
 – What
 • Decide topic & write project proposal (1/31)
 • Do the work
 • Final report (3/21) & group presentation (3/14)
Things you will do (iv)

• Mid-term
 – Feb. 12th

• Final
 – March ??
Grading

- 20% reading and class participation
- 20% mid-term
- 20% Final
- 40% course project
Summary

• Things to do
 – Form a reading group
 – Write a review for THE/Nucleus
 – Start thinking about project proposal

• Things to remember
 – This class is research oriented
 – System research is fun
 – Interact with your instructor 😊!