Plan

1. Digital Signatures Recall
2. Plain RSA Signatures and their many weaknesses
3. A Strengthening: PKCS#1 v1.5 RSA Signature Padding
4. An implementation error and its grave consequences
Assignment 1 is Due Tonight

Error in Problem 3 Hint:
- Technique outlined there omits an XOR with previous block.

If you want to test your code:
- Run attack with `cnet_id=davidcash` and `cnet_id=ravenben`
- Flag sizes vary in problems 2 and 3; Your attack should be robust to this
- (Especially on 2, where extra tricks are required for long flags.)
Definition. A **digital signature scheme** consists of three algorithms **Kg**, **Sign**, and **Verify**

- **Key generation algorithm** **Kg**, takes no input and outputs a (random) public-verification-key/secret-signing key pair \((VK,SK)\)

- **Signing algorithm** **Sign**, takes input the secret key **SK** and a message **M**, outputs “signature” \(\sigma \leftarrow \text{Sign}(SK,M)\)

- **Verification algorithm** **Verify**, takes input the public key **VK**, a message **M**, a signature \(\sigma\), and outputs **ACCEPT/REJECT**
 \[\text{Verify}(VK,M,\sigma) = \text{ACCEPT/REJECT}\]
Digital Signature Security Goal: Unforgeability

Scheme satisfies **unforgeability** if it is unfeasible for Adversary (who knows VK) to fool Bob into accepting M’ not previously sent by Alice.
“Plain” RSA with No Encoding

\[VK = (N, e) \quad SK = (N, d) \quad \text{where} \quad N = pq, \quad ed = 1 \mod \phi(N) \]

\[
\text{Sign}((N, d), M) = M^d \mod N
\]

\[
\text{Verify}((N, e), M, \sigma) : \sigma^e = M \mod N?
\]

\[e = 3 \] is common for fast verification; Assume \(e=3 \) below.
“Plain” RSA Weaknesses

Assume $e=3$.

Sign($((N, d), M)$) = $M^d \mod N$ Verify($((N, 3), M, \sigma)$) : $\sigma^3 = M \mod N$?

To forge a signature on message M': Find number σ' such that $(\sigma')^3 = M' \mod N$

M=1 weakness: If $M'=1$ then it is easy to forge. Take $\sigma'=1$:

$$(\sigma'^3) = 1^3 = 1 = M' \mod N$$

Cube-M weakness: If M' is a perfect cube then it is easy to forge. Just take $\sigma' = (M')^{1/3}$; i.e. the usual cube root of M':

Example: To forge on $M'=8$, which is a perfect cube, set $\sigma'=2$.

$$(\sigma')^3 = 2^3 = 8 = M' \mod N$$

(Intuition: If cubing does not “wrap modulo N”, then it is easy to un-do.)
Further “Plain” RSA Weaknesses

\[\text{Sign}((N, d), M) = M^d \mod N \quad \text{Verify}((N, 3), M, \sigma) : \sigma^3 = M \mod N? \]

To forge a signature on message \(M' \): Find number \(\sigma' \) such that \((\sigma')^3 = M' \mod N \)

Malleability weakness: If \(\sigma \) is a valid signature for \(M \), then it is easy to forge a signature on \(8M \mod N \).

Given \((M, \sigma)\), compute forgery \((M', \sigma')\) as

\[M' = (8 \ast M \mod N), \quad \text{and} \quad \sigma' = (2 \ast \sigma \mod N) \]

Then \(\text{Verify}((N, 3), M', \sigma') \) checks:

\[(\sigma')^3 = (2 \ast \sigma \mod N)^3 = (2^3 \ast \sigma^3 \mod N) = (2^3 \ast M \mod N) = 8M \mod N \]

\(\sigma^3 = M \mod N \) b/c \(\sigma \) is valid sig. on \(M \)
Further “Plain” RSA Weaknesses

\[
\text{Sign}((N, d), M) = M^d \mod N \quad \text{Verify}((N, 3), M, \sigma) : \sigma^3 = M \mod N?
\]

To forge a signature on message \(M' \): Find number \(\sigma' \) such that \((\sigma')^3 = M' \mod N \)

Malleability weakness: If \(\sigma \) is a valid signature for \(M \), then it is easy to forge a signature on \(8M \mod N \).

General form of malleability weakness: If \(\sigma \) is a valid signature for \(M \), then it is easy to forge a signature on \(M' = (x \times M \mod N) \) for any perfect cube \(x \).

\[
M' = x \times M \mod N, \text{ and } \sigma' = (x^{1/3} \times \sigma \mod N)
\]

Then \(\text{Verify}((N, 3), M', \sigma') \) checks:

\[
(\sigma')^3 = (x^{1/3} \times \sigma \mod N)^3 = (x \times \sigma^3 \mod N) = (x \times M \mod N) = (M' \mod N)
\]

\(\sigma^3 \mod N \) b/c \(\sigma \) is valid sig. on \(M \)
Further “Plain” RSA Weaknesses

Sign\((N, d), M\) = \(M^d \mod N\)
Verify\(((N,3), M, \sigma) : \sigma^3 = M \mod N?\)

To forge a signature on message \(M'\): Find number \(\sigma'\) such that \(\sigma'^3 = M' \mod N\)

Combining signatures weakness: If \(\sigma_1\) is a valid signature for \(M_1\), and \(\sigma_2\) is a valid signature for \(M_2\)…

… then it is easy to compute signature \(\sigma'\) on \(M' = (M_1 \ast M_2 \mod N)\)

\[M' = (M_1 \ast M_2 \mod N) \text{ and } \sigma' = (\sigma_1 \ast \sigma_2 \mod N)\]

Then Verify\(((N,3), M', \sigma')\) checks:

\[(\sigma')^3 = (\sigma_1 \ast \sigma_2 \mod N)^3 = (\sigma_1^3 \ast \sigma_2^3 \mod N) = (M_1 \ast M_2 \mod N) = (M' \mod N)\]

\(\text{b/c } \sigma_1, \sigma_2 \text{ are valid sigs}\)
Further “Plain” RSA Weaknesses

\[
\text{Sign}((N,d), M) = M^d \mod N \quad \text{Verify}((N,3), M, \sigma) : \sigma^3 = M \mod N?
\]

To forge a signature on message \(M' \): Find number \(\sigma' \) such that \((\sigma')^3 = M' \mod N \)

Backwards signing weakness: Generate some valid signature by picking \(\sigma' \) first, and then defining \(M' = (\sigma')^3 \mod N \)

Then \(\text{Verify}((N,3), M', \sigma') \) checks:

\[
(\sigma')^3 = (M' \mod N)
\]
Further “Plain” RSA Weaknesses

\[
\text{Sign}((N, d), M) = M^d \mod N \quad \text{Verify}((N, 3), M, \sigma) : \sigma^3 = M \mod N?
\]

To forge a signature on message \(M' \): Find number \(\sigma' \) such that \((\sigma')^3 = M' \mod N \)

Summary:
- Plain RSA Signatures allow several types of forgeries
- It was sometimes argued that these forgeries aren’t important: If \(M \) is English text, then \(M' \) is unlikely to be meaningful for these attacks
- But often they are damaging anyway
RSA Signatures with Encoding

\[VK = (N, e) \quad SK = (N, d) \quad \text{where} \quad N = pq, \quad ed = 1 \mod \phi(N) \]

Sign((N, d), M) = encode(M)^d \mod N

Verify((N, e), M, \sigma) : \sigma^e = encode(M) \mod N?

encode maps bit strings to numbers in \(\mathbb{Z}^*_N \)

Encoding needs to address:
- Perfect cubes
- Malleability
- Backwards signing

Encoding must be chosen with extreme care.

Messages & sigs are in \(\mathbb{Z}^*_N \)
RSA Signature Padding: PKCS #1 v1.5 (simplified)

Note: We already saw PKCS#1 v1.5 encryption padding. This is signature padding. It is different.

N: n-byte long integer.

H: Hash fcn with m-byte output.

Ex: SHA-256, m=32

Sign((N,d),M):
1. $\text{digest} \leftarrow H(M)$ // m bytes long
2. pad $\leftarrow \text{FF} || \text{FF} || \ldots || \text{FF}$ // n-m-3 ‘FF’ bytes
3. $X \leftarrow 00 || 01 || \text{pad} || 00 || \text{digest}$
4. Output $\sigma = X^d \mod N$

Verify((N,3),M,σ):
1. $X \leftarrow (\sigma^3 \mod N)$
2. Parse $X \rightarrow aa || bb || Y || cc || \text{digest}$
3. If $aa \neq 00$ or $bb \neq 01$ or $cc \neq 00$
 or $Y \neq (FF)^{n-m-3}$ or $\text{digest} \neq H(M)$:
 Output REJECT
4. Else: Output ACCEPT

Encoding needs to address:
- Perfect cubes
- Malleability
- Backwards signing

The high-order bits + digest means X is large and random-looking, rarely a cube.

Stopped by hash, ex: $H(2*M) \neq 2*H(M)$

Stopped by hash: given digest, hard to find M such that $H(M) = \text{digest}$.
RSA Signature Padding: PKCS #1 v1.5 (simplified)

Note: We already saw PKCS#1 v1.5 *encryption* padding. This is *signature* padding. It is different.

N: n-byte long integer.

H: Hash fcn with m-byte output.

Ex: SHA-256, m=32

Sign((N,d),M):
1. digest → H(M) // m bytes long
2. pad ← FF||FF||...||FF // n-m-3 ‘FF’ bytes
3. X ← 00||01||pad||00||digest
4. Output $\sigma = X^d \mod N$

Verify((N,3),M,\sigma):
1. $X \leftarrow (\sigma^3 \mod N)$
2. Parse $X \rightarrow aa||bb||Y||cc||digest$
3. If $aa \neq 00$ or $bb \neq 01$ or $cc \neq 00$
 or $Y \neq (FF)^{n-m-3}$ or digest $\neq H(M)$: Output REJECT
4. Else: Output ACCEPT

Introduces new weakness:

- Hash collision attacks: If $H(M) = H(M')$, then ...

$$\text{Sign}((N,d),M) = \text{Sign}((N,d),M')$$

- i.e., can reuse a signature for M as a signature for M'
Now: A Buggy Implementation, with an Attack

- Padding check is often implemented incorrectly
- Enables forging of signatures on *arbitrary* messages

Real-world attacks against:
- OpenSSL (2006)
- Apple OSX (2006)
- Apache (2006)
- VMWare (2006)
- All the biggest Linux distros (2006)
- Firefox/Thunderbird (2013)
 ...
 (too many to list)
Buggy Verification in PKCS #1 v1.5 RSA Signatures

Sign((N,d),M):
1. digest ← H(M) // m bytes long
2. pad ← FF||FF||...||FF// n-m-3 ‘FF’ bytes
3. X ← 00||01||pad||00||digest
4. Output σ = X^d mod N

Verify((N,3),M,σ):
1. X ← (σ^3 mod N)
2. Parse X → aa||bb||Y||cc||digest
3. If aa≠00 or bb≠01 or cc≠00 or Y≠(FF)^n-m-3 or digest≠H(M):
 Output REJECT
4. Else: Output ACCEPT

BuggyVerify((N,3),M,σ):
1. X ← (σ^3 mod N)
2. Parse X → aa||bb||rest
3. If aa≠00 or bb≠01:
 Output REJECT
4. Parse rest = (FF)^p||00||digest||...,
 where p is any number
5. If digest≠H(M): Output REJECT
6. Else: Output ACCEPT

Checks if rest starts with any number of FF bytes followed by a 00 byte.

If so, it takes the next m bytes as digest.

Correct: X = 00 01 FF 00 <DIGEST>

Buggy: X = 00 01 FF 00 <DIGEST> <IGNORED BYTES>

One or more FF bytes
Attacking Buggy Verification

One or more FF bytes

Buggy: \(\text{\texttt{X = 00 01 FF 00 <DIGEST> <IGNORED BYTES>}} \)

To forge a signature on message \(\text{\texttt{M'}} \): Find number \(\text{\texttt{\sigma'}} \) such that

\[
(\text{\texttt{\sigma'}})^3 = 00 01 FF 00 \text{H(M')} <\text{JUNK}> \mod \text{N}
\]

We'll use one FF byte \(m \) bytes long \(n - m - 4 \) bytes free for attacker to pick

Freedom to pick \(<\text{JUNK}> \) means we can take any \(\text{\texttt{\sigma'}} \) such that:

\[
00 01 FF 00 \text{H(M')} 00 00 \leq (\text{\texttt{\sigma'}})^3 \leq 00 01 FF 00 \text{H(M')} FF FF
\]

Sufficient to find: Any perfect cube in the given range. Then apply perfect cube attack.

\textbf{Easy!} (exercise)
Steps in Attack

1. Pick m you want to forge on
2. Compute lower and upper bounds (numbers), using $H(M)$.
3. Find a perfect cube x within allowed range
4. Output cube root of x as forged signature σ.
Attack Summary

- When padding check allows variable number of FF bytes, forging is easy
 - Only requires a simple search for a perfect cube in a given range
- Why did so many make this error?
 - I don’t know
 - My guesses:
 - Plugging in libraries for padding removal without context
 - Traditional unit testing is hard to apply to crypto.
 - The details omitted in my description of the padding make parsing much harder. (Actual version includes in X an ASN.1 identifier of hash function, which is complicated in full generality.)
- Attack defeated by using large \(e = 65537 \)
Other RSA Padding Schemes: Full Domain Hash

\[N: \text{n-byte long integer.} \]
\[H: \text{Hash fcn with m-byte output.} \]
\[k = \text{ceil}((n-1)/m) \]

Ex: \(\text{SHA-256, m=32} \)

Sign((N,d),M):
1. \(X \leftarrow 00 || H(1 || M) || H(2 || M) || \ldots || H(k || M) \)
2. Output \(\sigma = X^d \mod N \)

Verify((N,e),M,\sigma):
1. \(X \leftarrow 00 || H(1 || M) || H(2 || M) || \ldots || H(k || M) \)
2. Check if \(\sigma^e = X \mod N \)

Bonus: Can prove security, in a strong sense.
Other RSA Padding Schemes: PSS

- Somewhat complicated
- *Randomized* signing

Bonus: Can *prove* security, in a strong sense.
RSA Signature Summary

- Plain RSA signatures are very broken
- PKCS#1 v.1.5 is widely used, in TLS, and fine if implemented correctly
- Full-Domain Hash and PSS should be preferred
- Don’t roll your own RSA signatures!
Other Practical Signatures: DSA/ECDSA

- Based on ideas related to Diffie-Hellman key exchange
- Secure, but ripe for implementation errors

Hackers obtain PS3 private cryptography key due to epic programming fail? (update)
The End