Parallel Programs
What is parallelization and why?
What is parallelization and why?

• Conceptual reason
 • Sometimes it give you conceptual isolation among parallel units

• **Performance** reason
 • True parallelism: get multiple CPUs running at the same time
 • Concurrency: keep the CPU utilization high, while some concurrent units are waiting for I/Os

• Modern hardware/system trend
 •Multicore computers
 • Distributed systems
How to parallelize a sequential algorithm?

- Data parallelization
- Task parallelization
- Pipeline parallelization
What code can (not) be executed in parallel?
Principle

• Parallel running code should have little dependence with each other

• When there is dependence
 • Synchronization is needed \rightarrow slowdowns
 • Without synchronization \rightarrow concurrency bugs (races)
Examples

• Matrix addition
• Array summation
• Array sorting
 • Quicksort
 • Mergesort
 • Bubblesort
Matrix addition

• How to parallelize it?
Matrix addition

• How to parallelize it?

• Use data parallelization
 • When the same operation is applied on many different variables/data, we can make the operation for different data execute in parallel
 • Suppose we have K CPU cores, we can make each core work on N/K rows (N is the dimension of the matrix row)
 • What if we make each core work on N/K columns?
Array Summation

int sum = 0;
for (int i=0; i< M; i++)
 sum = sum + A[i];
printf ("sum is %d", sum);
Array summation

• Sometimes, we need to change the sequential code a little bit ...

for (l =0 ; i<M/4; i++)
 sum1 = sum1 + A[i]
For (i=M/4; l <M/2; i++)
 sum2 = sum2 + A[i]
...
...
Sum1+sum2+sum3+sum4
Quicksort

```
algorithmd quicksort(A, lo, hi) is
    if lo < hi then
        p := partition(A, lo, hi)
        quicksort(A, lo, p - 1)
        quicksort(A, p + 1, hi)

algorithmd partition(A, lo, hi) is
    pivot := A[hi]
    i := lo - 1
    for j := lo to hi - 1 do
        if A[j] ≤ pivot then
            i := i + 1
            swap A[i] with A[j]
    swap A[i+1] with A[hi]
    return i + 1
```
How to parallelize quicksort?

• Run the two quicksort in parallel

• What if we have more than 2 CPUs?
• Are we guaranteed to get 2X speedup?
Mergesort

Divide the unsorted list into \(n \) sublists, each containing 1 element

Repeatedly merge sublists to produce new sorted sublists, until there is only 1 sublist remaining
How to parallelize merge-sort?

• Run the merge sort on different sub-lists in parallel

• Merge-sort is among the easiest to parallelize sorting algorithms
procedure bubbleSort(A : list of sortable items)
 n = length(A)
 repeat
 swapped = false
 for i = 1 to n-1 inclusive do
 /* if this pair is out of order */
 if A[i-1] > A[i] then
 /* swap them and remember something changed */
 swap(A[i-1], A[i])
 swapped = true
 end if
 end for
 until not swapped
 end procedure
Bubble sort

• Bubble sort is extremely difficult to parallelize because there are strong dependency among loop iterations
Example summary

• Matrix addition
 • Trivial data parallelism
 • Pay attention to row/column memory layout

• Array summation
 • Easy data parallelism, but we cannot follow the original sequential implementation where there is dependency among loop iterations
 • Cut the array to sub-arrays, get sub-array sum, aggregate

• Array sorting
 • Quicksort
 • Mergesort
 • Bubblesort
A more difficult example

while (! End of source file)

 read a line

 process the line

 write the processing result to destination file
How to parallelize?

Use pipeline parallelism: run three threads as following

CPU1: Read line 1 \rightarrow Process line 1 \rightarrow write result 1 \rightarrow read line 4 \rightarrow process line 4

CPU2: read line 2 \rightarrow process line 2 \rightarrow write result 2 \rightarrow read line 5 \rightarrow ...

CPU3: read line 3 \rightarrow process line 3 \rightarrow write result 3 \rightarrow read line 6 \rightarrow ...
How to parallelize a sequential algorithm?

- Data parallelization
- Task parallelization
- Pipeline parallelization