CMSC 28100 Spring 2017 Homework 9

May 25, 2017

- 1. Show that if P = NP, then every language in NP is NP-complete, except for \emptyset and Σ^* .
- 2. Consider the following language:

 $K := \{(M, x, 1^t) \mid M \text{ is a NTM that accepts } x \text{ within } t \text{ steps}\}$

- (a) Show that $K \in \text{NTIME}(n)$.
- (b) Show directly (not by reduction from another known **NP**-complete language) that K is **NP**-complete.
- 3. Show that if SAT \in **P**, then there is a deterministic polynomial-time Turing machine M such that for all formulas φ , if φ is satisfiable then $M(\varphi)$ outputs a satisfying assignment to φ , and otherwise M rejects. This is called solving the "search version" of SAT (searching for a witness, rather than merely determining if one exists).
- **4.** A language L is p-selective if there is a polynomial-time (deterministic) Turing machine M such that 1) $M(x,y) \in \{x,y\}$ –given (x,y), M outputs either x or y- for every pair of strings (x,y), and 2) if at least one of x or y is in L, then M(x,y) outputs a string in L which is necessarily either x or y, by (1).

Show that if SAT is p-selective, then $\mathbf{P} = \mathbf{NP}$. Hint: The solution to the previous problem contains a relevant idea.