
CMSC 28100-1 Spring 2017

Homework 2

April 6, 2017

1. Knapsack Problem is defined as follows. Input: a set S of |S| = n items each with a
positive integer weight wi and a nonnegative value vi (i ∈ S), knapsack capacity W , and the target
total value V . Output: ‘Yes’ if there is a subset S′ ⊆ S of items such that

∑
i∈S′ wi 6 W and∑

i∈S′ vi > V . ‘No’ otherwise.

(a) Give an algorithm for Knapsack Problem. If you give a dynamic programing algorithm, state
the precise ‘English’ definitions of your subproblems, state base cases, and the recurrence.
Try to make it as efficient as you can. Analyze its running time. Does it run in polynomial
time?

(b) Define εW-Knapsack Problem for a fixed constant ε exactly as Knapsack Problem above
except that you have the guarantee that, in the input, εW 6 wi for each i ∈ S (i.e. no
arbitrarily small weights). Can you come up with a polynomial time algorithm for this
problem? Or is your algorithm for part a already polynomial time for this problem? Why?
Analyze. (expected answer is only a couple of lines) Note: ε is not a part of the input.

(c) Define εV-Knapsack Problem for a fixed constant ε exactly as Knapsack Problem above except
that you have the guarantee that, in the input, εV 6 vi for each i ∈ S (i.e. no arbitrarily
small values). Can you come up with a polynomial time algorithm for this problem? Analyze
your algorithm’s running time. (algorithm is not complicated, just two lines) Note: ε is not
a part of the input.

2. We are given an array A[1..n] of n real numbers, n > 3, with the special property that
A[1] > A[2] and A[n−1] 6 A[n]. We say that an element A[x] is a local minimum if A[x−1] > A[x]
and A[x] 6 A[x + 1]. First, note that, given A[1] > A[2] and A[n− 1] 6 A[n], array must have at
least one local minimum, and it is trivial to find it in O(n) time. Give an algorithm to find and
return a local minimum of A in O(log n) time. Analyze running time of your algorithm. Prove the
correctness of your algorithm.

3. Given an undirected simple graph G = (V,E), give a O(|V |) time algorithm to find out
if it has a cycle. A cycle is a path that starts and ends with the same vertex. Note that your
algorithm should not depend on the number of edges in the graph. So even if the graph is very
dense with Ω(|V |2) edges, your algorithm should still run in O(|V |) time. Analyze the run time of
your algorithm. Algorithm is simple, but the argument to justify O(|V |) running time is may not
be immediate to see.
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