To appear in Proc. 4h ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, May 1993.

Transforming High-Level Data-Parallel
Programs into Vector Operations’

Jan F. Prins and Daniel W. Palmer

Department of Computer Science
University of North Carolina
Chapel Hill NC 27599-3175
{prins,palmerd} @cs.unc.edu

Abstract

Efficient parallel execution of a high-level data-parallel
language based on nested sequences, higher order
functions and generalized iterators can be realized in the
vector model using a suitable representation of nested
sequences and a small set of transformational rules to
distribute iterators through the constructs of the
language.

1. Introduction

Currently, the development of parallel programs
primarily takes place in low-level machine-specific
programming languages since these are typically the
only languages supported on parallel machines. In this
setting, prototyping is a painful process, since small
changes in the high-level approach precipitate a flood of
changes in low-level details. To make things worse,
little or none of this effort may be portable to other
settings.

Proteus! is a high-level language designed for the
prototyping of parallel computations [MNP+91, NP92].
A Proteus program specifies parallelism in a high-level
and machine-independent fashion. The parallel semantics
of such a program can be simulated sequentially, to
observe its behavior and make measurements of
machine-independent characteristics such as total work
and available concurrency. Actual parallel execution on
a parallel machine can be obtained by directed
transformation of the prototype to place it in a restricted
form that can then be translated directly to a low-level
(possibly machine specific) programming language. We
use the KIDS [Smith90] interactive program
development system to manage the transformation and
translation process. In this fashion, a high-level

TThis work supported in part by DARPA/ISTO,monitored
under ONR Contract N00014-91-C-0114

I'The Proteus language is a component of the DARPA
Prototech effort.

prototype parallel computation can be experimentally
developed and subsequently refined into a parallel
program executing on a parallel machine.

In this paper, we are concerned with the directed
transformation of data-parallel Proteus programs. The
data-parallel constructs of Proteus permit the
construction and manipulation of aggregate values (e.g.
sets and sequences) and, in particular, include the ability
to apply an arbitrary function to each element of an
aggregate value to yield an aggregate result.

High-level programming languages like APL [Iver62]
and SETL [Schw70] pioneered the inclusion of data-
parallel constructs to gain expressive power by bringing
the languages closer to familiar and powerful
mathematical notations. The aggregate in the original
APL language was the flat array, an array whose
elements are all scalar values. To obtain fully general
data-parallelism, in which any function including data-
parallel functions can be applied in a data-parallel
fashion, requires nested aggregates, in which elements
may themselves be aggregates. A nested array
foundation for APL was described by [More79], and can
be found in NIAL, APL2, J, SETL and FP [Back78].
Although fully general data-parallel programs are
conveniently specified in these languages, they are not
executed in parallel. This is due to implicit serial
dependencies in the specification of apply-to-each
operations and the apparent requirement for complex and
fine-grain MIMD control of execution. Thus these
languages are not parallel programming languages.

Languages in which data-parallelism is the mechanism
used to specify actual parallel computation such as
*Lisp, MPL, and DAP-Fortran have historically targeted
specific SIMD parallel computers. More recent
languages like CMFortran and C* are portable across
various SIMD and MIMD machines. The aggregates in
these languages are restricted to flat arrays distributed in
a regular manner over processors in an effort to predict
and minimize communication requirements in execution
[KLS+90, Prin90]. Because aggregates are flat, only a
limited class of arithmetic and logical operations may be
applied in a data-parallel fashion.

Consequently, using these languages, it is not possible
to directly express nested parallelism —the data-parallel
application of a function which is itself data-parallel.



For example, a data-parallel sort function can not be
applied in parallel to every sequence in a collection of
sequences. Yet this is the key step in several parallel
divide-and-conquer sorting algorithms. Indeed, there is
extensive evidence that nested data-parallelism is an
important component in the compact expression of
efficient parallel computations [Blel90, Skil90,
MNP+91]. The difficulty is not in the languages, since
general data-parallel languages can easily express nested
parallel computations. Rather the problem lies in the
difficulty of translating nested parallelism to achieve
efficient parallel execution.

A major step in this direction was taken in [Blel90]
where it was shown that for nested sequence aggregates
subject to a restricted set of operations, an equivalent
vector model program operating on segmented flat
sequences can be derived. The vector model is efficiently
executed on a wide class of parallel machines. Building
on these techniques, the transformations presented in this
paper give a simple mechanism to transform the fully
general data-parallelism available in Proteus programs
into the vector model.

1.1 Related work

The problem of deriving parallel programs by
transformation has received wide attention. In this
paper, we are concerned specifically with the translation
of data-parallelism, so we restrict our review of related
work to that concerned with the implementation of
nested parallelism.

CM Lisp [SH86] and Paralation Lisp [Sabo88] are fully-
general data-parallel languages implemented as high-level
programming languages for the Connection Machine.
However, implementations of these languages apply
nested data-parallel operations in a serial fashion.
McCrosky [McCr87] describes a way to represent the
nested arrays of APL and gives implementations for
APL primitives on a SIMD execution model, but nested
parallel execution is not addressed. Philippsen [PTH91]
describes an implementation of nested parallelism in
Modula-2* for a SIMD computer, but Modula-2* has no
data-parallel nested aggregates. So while data parallel
operations may be nested the programmer must
orchestrate their parallel access to the appropriate
portions of a shared global variable. This requires
extensive bookkeeping and use of low-level facilities;
thus, we believe that the expressive utility of nested
parallelism in this setting is limited.

In [BS90] it was shown how to compile a subset of
Paralation LISP into vector model code. More recently,
the nested vector model language NESL [Blel92] has
used similar techniques to target the portable vector
model intermediate language CVL. Compared to these
approaches, the translation of Proteus includes
translation of function values (which are critical

elements of the higher-order data-parallel style), and
starts from a more general definition of the data-parallel
construct (the iterator in Proteus) based on a shared
memory view. A key contribution of this paper,
consistent with our aims for parallel program
development by refinement, is the transformational
approach to the translation problem.

The remainder of this paper is organized as follows. The
next section describes a subset of the Proteus notation.
Section 3 details language transformations to remove
iterators from a Proteus expression. Section 4 describes
the vector model representation of nested sequences and a
translation rule that replaces parallel functions operating
on nested sequences with simple vector model functions.
Section 5 demonstrates the rules on a simple example.
We conclude with implementation status, and a
discussion of results.

2. Data-Parallel Expression Language

We describe a subset 2 of Proteus that can be
transformed for vector-model execution. This subset is a
restriction of Proteus in three ways. First, we restrict
ourselves to the expression language; thus the Proteus
notion of state is not considered. Second, we require that
the types of all expressions be static and monomorphic;
Proteus expressions in general may exhibit dynamic and
polymorphic types. Since overloading is permitted in 2,
a polymorphic Proteus function can be instantiated with
several different monomorphic argument types. Finally,
the types of values and operations available are restricted
to simplify the exposition. For example, function
values must be fully-parameterized, set-valued aggregates
are not considered, the set of scalar types is limited, and
only a small number of operations on sequences are
provided. Extension of this last restriction should be
relatively simple. To achieve programs that meet all of
these restrictions, prior directed transformation steps may
be required. The restrictions are not overly limiting
because the subset is highly expressive.

The types of P include scalar types, arbitrarily nested
sequences, tuple types and function types generated by
the following CFG:

T ::=Int|Bool | Seq(T) | (T x..x T) | (T = T)

In contrast to data-parallel languages that do not
distinguish between tuples and sequences, the sequences
in P are homogeneous. This requirement is needed to
statically type all expressions.

Expressions in 2 are composed using the constructs in
Table 1. A small number of basic functions predefined
in P are given in Table 2; other functions can be
constructed in terms of these basic functions. We note
that we have deviated somewhat from the usual Proteus
syntax.



construct meaning

application of function value ef
to arguments (e{,...,ep)

(ef)(e1....en)

fun (x1,...,x,) A-abstraction of body e with

e parameters x 1, ... Xp
let value of e7 with x bound to
X =e] value of e
in
€2
ifb yields eq if b is true else yields
thene e
elsee)

Table 1. Basic constructors of

The index origin for sequences is 1, hence V[1][2] is
the second element of the first sequence in the nested
sequence V. The operation restrict(V,M) with
#V=#M yields V with all elements corresponding to
false values in M removed. If R = combine(M,V,U)
where #M = #V + #U, then restrict(R,M) =V and
restrict(R, ~M) = U (here ~M denotes the element-
wise complement of M).

The dist operation replicates values in the first
sequence by the corresponding value in the second
sequence. For example, dist([3.,4,5],[3.2,1]) yields
([3.3.31.[4.41.[5]].

The remaining construct in ?is the iterator which is the
source of all data-parallelism. Its form is:
[x < d: e]

where x is an identifier, d is a sequence-valued
expression of type Seq(a) called the domain of the

iterator, and e is an expression of type f under the
assumption that free occurrences of identifier x have type
a. The iterator yields a value of type Seq(f3) defined as
follows (e  denotes the syntactic replacement of every
free occurrence of x in e by the expression y):

Vk El.#d: [x<d:e]lk]= (e)“:l[k]

This definition gives the value of an arbitrary element of
the result independent of the values of the other
elements, hence a natural implementation is to evaluate
all elements of the result in parallel.

It is often convenient to restrict the set of values for
which e will be evaluated to elements from d satisfying a
predicate b in which there are free occurrences of x.
Thus we define

[x <= d| b:e] =
let
T = restrict(d,[x < d : b])
in %
[t < T: e t]
The subset Pis a flexible and comprehensive notation
that can be used to express scalar functions,

fun odd(a) = (1 == (a mod 2))
data-parallel functions,
fun sgs(n) = [1i < [l..n]: i*i]

fun concat(V,wW) =
[i < [1..(#V+#W)]:
if (is#V)
then V[i]
else W[i—(#V)] 1

higher-order data-parallel functions,

name notation signature
scalar functions +,—,==,etc. a— B (where a, B €{Bool, Int})
tuple_cons (€ls--r€n) al x ...x op = (a1 x ... x o)
tuple_extract etol (a1 % ... x ap) x Int = a;
seq_cons [els--renl ax..xo— Seq(a)
seq_index es[e1lle2] ... [ek] Seqk(a) x Intk — a
seq_update (esi [e1]l .. [ekl:ey) Segk(a) x Intk x a— Seqk(a)
length #eg Seq(a) — Int
range [e1 .. e2] Int x Int — Seq(Int)
restrict restrict (eg, ep) Seq(a) x Seq(Bool)— Seq(at)
combine combine (epe1,e2) Seq(Bool) x Seq(a) x Seq(a)— Seq(at)
distribute dist(ej,e2) Seqk(a) x Seqk(Int)— Seq®+ ()

Table 2. Basic functions of P



fun reduce(f,V) =
if (#Vv = 1)
then V
else
let
W= [i< [1l..(#V) div 2]:
£(V[(2%1)-1],V[2*i])]
in
if (odd(#V))
then reduce(f,
concat (W, [V[#V]1]))
else reduce(f,W)

and nested data-parallel functions,

fun oddsq(n) =
[i < [l..n]]| odd(i): sgs(i)]

fun flatten(Vv) =
reduce (concat,V)

We now turn to the transformation of 2.

3. Transforming 7 to data-parallel form

The expressive utility of the iterator construct comes
from its ability to give a per-element specification of an
aggregate result. In this view, an iterator sits at the head
of a syntax tree that is repeatedly evaluated with different
values for the bound variable to yield successive
elements of the result. This per-element view of the
computation is, however, rather different from a data-
parallel computation in which operations are applied to
aggregates of data, instead of single elements.

To place an arbitrary expression involving iterators into
a form suitable for data-parallel execution, we use
transformation rules that distribute the iterators through
the constructs of 2 toward the leaves of the syntax tree.
When fully distributed through all the internal nodes of a
syntax tree, iterators enclose leaves that are simple
constants or references to variables. These iterators can
then be replaced by sequence-valued expressions that
directly generate the equivalent result. An expression
transformed in this manner is data-parallel: it contains no
iterators and operates on sequence aggregates rather than
individual elements.

In order to simplify the presentation of the
transformations, we introduce some definitions. Let o
be an arbitrary type of 2, let d be some non-negative
integer. A depth d frame of elements of type o is a
nested sequence of type Seqd(a). For a given function

grayx..xop—>f,

the depth d parallel extension of g is defined to be the
function

gd:Seqd(al)x...xSeqd(an)—>Seqd(/3’)

that applies g to each element in a depth d frame of
arguments, yielding a depth d frame of results. Note that
under this definition, g¥=g. All arguments of gd must
be conformable at depth d, meaning that each argument
exhibits the same nesting structure within the depth d
frame.

If g is defined as fung(x1,...,Xp) = e, for some
arbitrary body e, then gd can be derived from g by
enclosing e within d iterators that enumerate the
elements of the arguments at depth d. That is,

fungd(vy, ... , Vp) = (RO)
[i7 < [l..#V1]:
[i2 < [1..#(Vi[i1])]:

[ig <= [1..#(Vi[i1]..[ig-1]1)]:
let
X3

Vi[i1l..[1ia],

Xn = Vpl[igl..[iq]

]

The conformability requirement permits selection of
corresponding elements from all arguments based on the
nesting structure of one argument (the first argument in
this case).

Definitions of gd will be overloaded to permit particular
arguments to omit the depth d frame. Semantically,
such arguments are considered to be replicated into a
depth d frame to be conformable with the remaining
arguments. This is a generalization of scalar extension
found in the operations of many data-parallel languages.

To explain the transformation, consider placing the
expression

[i < [1..N]: g(i)] 3.1)

into data-parallel form where fung(x) = e is some
arbitrary function with type Int — Int. The iterator can
be distributed through the function application of g in
(3.1) by replacing g with the depth 1 parallel extension
g! to obtain

gl([i < [1..N7: i1) 3.2)
where
fungl(v) =
[J < [1l..#V]: 1let
~ X = V[]]
in
e

]

The iterator introduced in g1 can in turn be eliminated b
application of the transformation rules to the body of g*.



The iterator [i<—[1..N]:i] remaining in
expression (3.2) encloses a simple reference to the bound
variable 7 and can be replaced by the sequence valued
expression [ 1. .N] to yield

gl([1..n]) (3.3)

and this is the form of (3.1) that is suited for data-
parallel execution (after g1 is transformed).

The most challenging problem is the construction of
sequence-valued expressions to replace simple references
inside nested iterators. Each enclosing iterator increases
the combinations of values of the bound variables for
which the expression can be evaluated simultaneously.
Iterators enclosing a constant or a free occurrence of a
variable may be replaced directly by the constant or
variable since we rely on parallel extensions of functions
to replicate such single values to the appropriate depth.
For an occurrence of a variable bound in one of the
enclosing iterators (variables introduced in iterators or in
let statements enclosed within iterators), the sequence-
valued expression will depend on the iterators between
its definition and its use.

If we restrict the form of the iterator domain to [1..e]
where e may be an arbitrary expression, then the basic
operations rangel and dist and their parallel
extensions suffice to build all required sequence-valued
expressions. The definitions of these two functions are

rangel(n) [1..n]
dist(c,r) = [1 < [l..r]: c]

The general form of a collection of iterators enclosing a
bound occurrence of a variable is

[i; < [l..e1]:
[ig < [l..eql: ikl ... 1]

where if is bound in iterator k. The expression
replacing the nested iterators must yield elements
arranged in a depth d frame. Generally speaking, the
transformation of the upper bound expression ej of the
domain in iterator k < d yields a depth k-1 frame of
upper bounds t(eg), hence the values assumed by i are
given by V =rangel k'l(t(ek)). To expand this value to
a depth d frame, we must replicate the values in V
according to the domain sizes of the iterators k+1 ... d.
Since the size of the domain in iterator j on each nested
invocation is given by the upper bound expression ej,
this can be accomplished with the expression

distd-1(gistd-2( ..
dist¥*1l(distX(v, w(ers1)),
wek+2)) roeg-1)) » Teq))
For example, in the following two iterators
[i < [1..N]: [J < [1..i]: i]]
[1 < [1..N]: [J < [1l..1]: J1]

we have t(e;) =N and t(ep) = rangell(N) =
[1..N]. These iterators can be replaced by the
expressions

distl(rangelf(t(e)),t(en))
= distl(rangel®(N),rangel?(N))

and

rangell(t(er))
= rangell(rangel?(N))

respectively. In the syntax-directed transformation rules
that follow, the expressions replacing nested iterators are
constructed incrementally, with the depth of all bound
variables increased each time an iterator is encountered.

We now outline the transformations to eliminate
iterators from arbitrary programs in ?. A program in P
consists of a set of function definitions. The
transformations are applied to the body of each function f
defined in the program as well as to each of the parallel
extensions of f introduced as a result of the
transformations. The number of parallel extensions of f
that are introduced is a static property of the program. A
subsequent translation step provides a single flat-vector
implementation that can be used for all depth d = 1
parallel extensions of functions.

3.1. [Iterator canonical form

We first transform a program so that each iterator is in a
canonical form. An iterator is in canonical form if its
domain is a range of consecutive integers starting with
1. An arbitrary iterator can be placed in this form using
the rule

[X < e1: e2] = R1)
let
vV = e]
1ni<— 1..#V] : (e2)"
[ [l..#V] : 2V[i]]
3.2 Iterator elimination
For each function definition £ (x7,...,Xy) = e,we

eliminate all iterators from the body of the definition by
replacing e with the syntax-directed transformation
t(e,0) defined below. In the rules that follow, angle
brackets enclose the syntactic category in Pon which t
is being defined. Thus t(«id», j) = id indicates that
translates all identifiers to themselves. Refer to the
section 5 for an example illustrating the application of
the rules.

T(«id», j) = (R2a)
id

T(«const», j) = (R2b)
const



r(«ef (e1, ... ,ep»,j) = (R2¢)
(tCep, D) (e, ) - s Tens )

T(«[i <= [l..e1l: exl»,)) = (R2d)
let
ib = e,
i = rangell(ib)
v = dist/(v, ib)

for all v that occur in e and are

bound in enclosing iterators

in

t(e2,j+1)

T(«if e; then e) else e3»,j) = (R2e)

let
~ M= (e ))
in

let

R2 = _
if restrict/(M,M) =
empty_ frame/ (M)
then
let )
v = restrict/(v,M)
for all v that occur in e
bound in enclosing iterators
in t(ep,))
else i
empty_ frame/ (M)
R3 = . .
if restrict/(M,not/(M)) =
empty_ frame/ (M)
then

let . )

v = restrict/(v,not/(M))
for all v that occur in e3
bound in enclosing iterators

in t(e3,))

else )
empty_ frame/ (M)
in )
combine/(M,R2,R3)
T(«let v = e1 in e2»,j) = (R2f)

let
v o= alen))
in

(e, ))

T(«fun (x1, ..
fun (x, ...

1Xp) e».j) = (R2g)

rxn) e

where empty £ rame/ (V) creates a depth d frame that
has the same structure as V but contains no elements at
depth d. Since all function definitions are fully
parameterized, a function definition is independent of any
surrounding iterators and reduces to the case of an iterator
surrounding a simple constant.

The transformations have the potential to create a large
number of function definitions, since each function may
be called in a variety of iteration depths d and with a
variety of depth O and depth d argument frames.
However, as we shall see in the next section, all depth 0
argument frames can be converted to depth d argument
frames in a uniform way, and all depth d >1 parallel
extensions of a function can be implemented by using
the depth 1 parallel extension.

4. Translation of ?to 7

Iterator free data-parallel expressions in P, as produced
by the transformations of the previous section, can be
translated to an implementation of vector-model
parallelism [Bl1el90] such as C with the C Vector Library
of [BCS+90]. Here, we characterize such an
implementation, 7/, as a flat, low-level data-parallel
notation.

The types of 7 are scalar types, flat sequence types,
tuple types and function types that are generated by the
following CFG:

T ::= Int| Bool| Seq(Int) | Seq(Bool) |

Seq(T— T) | (Tx ... x D |(T—T)
The basic constructors of ¥ include the constructors
given in Table 1. Note that 7’ does not include the
iterator construct. The operations of 9/ are the
operations given in table 2, and the depth 1 parallel
extensions of each of these functions.

4.1 Representation of Nested Sequences

All values of P, with the exception of nested sequences
and sequences of tuples, can be directly represented in V.
A sequence value in P with type Seq%(a) for some type
ain Pand d = 1 has a vector representation in V as
follows. A collection of k vectors V1, ..., Vi are used,
where V1,..,Vq are descriptor vectors, Vi is always a
singleton vector and V;1,..,Vk are value vectors, If a
is a scalar type then k = d+1, but if a is a tuple type
then k > d+1. A vector representation and its equivalent
nesting tree representation are shown in figure 1. Each
descriptor vector indicates the partitioning for the vector
on the level below. An important characteristic of this
representation is that:

Viil<isd #Viy1 =2 V;

Only adjacent descriptor vectors are directly related to
each other, so maintaining a consistent representation
when performing sequence operations is relatively
simple. Note that empty sequences at the leaves of the



nesting tree are represented by a zero index in the lowest-
level descriptor vector.

Representation of:
[ [[2,71,03,9,811,0[[31,[4,3,2]] 1
Nesting Tree Representation

1st level index
2nd level index

3rd level index

values

Vector Representation

1st level index 2

2nd level index 212

3rd level index 213 3

value vector 2 319 8|3|4|3|2I
figure 1

4.2 Operations on Vector Representation of
Nested Sequences

There are two operations that directly manipulate the
representations of nested sequences: extract and insert.
For V a sequence of depth d+k, extract(V ,d) flattens the
top d nesting levels (see figure 2) and can be
implemented by replacing the top d descriptors by the
singleton vector V1 =[ 2Vq].

Representation Manipulations
d 1%
k

R =extract(V d) V=insert(R, T, d)

figure 2

The insert operation forms a depth d+k sequence from a
sequence of depth k+1 and another sequence of depth
greater than d. In our translation, the second sequence is
always the same as the sequence used in an extract
operation, but this is not required. Insert(R,V.d)
removes the top descriptor from R and replaces it with
the top d descriptors from V (see figure 2). We require
that #T4 = Rq[1]. This insures that the result of an
insert operation is a consistent nested sequence
representation. Note that V = insert(extract(V.d),V.d))
for any d = depth of V.

4.3 Translation of Functions on Nested

Sequences

A depth d parallel extension of f, operates on values at
depth d without altering the frame, hence it suffices to
use f1, the simple depth 1 parallel extension of f, to be
used in all contexts. To achieve the effect of f d (e), we
flatten the frame around values in e, apply fl, and
restore the frame around the result of this application.

This is accomplished by using the extract operation to
remove the nesting frame of a sequence so the simple
data-parallel function can be applied. The result is then
re-attached to a frame using the insert instruction as
shown in figure 3.

fd
V _— p S

extract(V,d ) insert(R,V,d)
w _1>R
f

figure 3

This principle is the basis for our translation rule. It
eliminates the need for the higher depth parallel
extensions of functions. The translation rule for
application of f d with d > 1 is:

fd(€], €, ...,.ep) = (T1)
let V1=e¢;, V2=e€3,...,Vn=¢y,
in
Insert
(f’ (Extract(vl,d),
Extract(v2,d),...
Extract(Vn,d)),
v1,d)

If f is a function-valued parameter to a function g, it is
necessary to pass f in invocations of g as a pair (f, f1),
so that the correct version can be used in a given
context.

4.4 Implementation of Functions of 7

After application of the translation rule, all expressions
in Pare in terms of the basic functions of 9. To realize
parallel execution, % is in turn translated to some
executable notation. In our case this is C with the
vector operations provided by CVL. The details of the
implementation in CVL of the operations in table 2 and
their depth 1 parallel extensions is beyond the scope of
the current paper. With these implementations and the
translation rule, we can claim that all possible
expressions in P can be represented and executed using
only constructs in 7.



4.5 Vector Level Optimizations {R2d}
T(«[1 < [l..length(V)]
let
n = index(V,1i)
in
[J < [1..n]: mult(j,3)] 1»,0)

Because they are so frequently applied, it is critically
important that the insert and extract operations have
minimal overhead. The selection of the tree vector
representation for nested sequences was chosen
specifically because those operations can be implemented
inexpensively on this representation.

let

Certain functions may have parameters that should not ib = t(«length(V)»,0)
be extracted and inserted. Consider the function i = rangelV(ib)
seq_index. If the source parameter is fixed relative to the in
surrounding iterators, there is no need to replicate it T(«let
when using iterator transformations. If the replication is n = seq_index(V,1i)
applied in these cases, the result is that each set of index in
values would retrieve from their own copy of the source [J < [1..n]
sequence, clearly a waste of time and space. We can smult(j,j)I»,1)
avoid such waste by not always replicating depth 0
argument frames.

. . {R2c}
Clearly it would be advantageous to increase the set of T(«length(V)»,0) =

predefined functions in % since their direct
implementation can be much more efficient than their
evaluation as a user-defined function. Consider, for
example, the function flatten defined in section 2.

T(«length», 0)0 (T («V»,0))

Flatten can be implemented simply by creating a new {R2a}
descriptor vector for the values rather than by creating a t(«length»,0) 0 (T («V»,0)) =
new value using the reduce and concat function
definitions. length (V)
5. Example
We illustrate the transformations and translations R2f}
described in the previous two sections on the simple T(«let ) )
expression .= index(V,1)
in
[k <= [1..5]: sgs(k)] [§ < [l..n]:mult(j,j)I»,1) =
using the function sgs defined in section 2: let
e
fun sgs(n) = [j < [l..n]:mult(j,])] n = t(«seq_index(V,i)»,1)
in

The top level expression is transformed to T(«[§ < [1..n] :mult(3,3)]»,1)

let
kb =5
k = rangel9(kb) R2c} _

in T(«seq_index(V,i)»,1) =
sqsl(k)

T(«seq index», 1) 1 (T («V»,1),

Since the resultant expression has introduced sqgs 1 we - T(«i», 1))
must define this function using sgs and transform it to

remove iterators.

{RO}
fun sqsl (V) =

{R2a}
T(«seq_index»,1) 1 (T («V»,1),T («i»,1))=

. seq indexl(v,i)
T(«[1 < [1l..length(V)] -

let
n = seq index(V,1i) {R2d}
in T(«[j < [l..n] smult(j,J)]»,1) =
[J < [1..n]: mult(3,3)] 1»,0)
let
jb = t(«n»,1)



j = rangell(jb)
in
T(«mult(j,j)»,2)

1R2a}
T(«n»,1) = n

{R2d}
T(«mult(j,j)»,2) =

T(«mult», 2)2 (T («j»,2), T («F»,2))

{R2a}
T(«mult», 2)2 (T («j»,2), T («F»,2)) =

mult2(3,79)

Combining all the results yields the transformed version
of the function sqs*:

fun sqsl(V) =
let
ib = #v
i rangelo(ib)
in
let
n = seq_indexl(v,i)
in
let
jb = n
j = rangell(jb)
in
mult?(3,3)

The translation rule must be applied to both the top
level expression and the transformed function. The
expression remains unchanged, but the invocation of
mult is translated.

Tl
muitz}

insert (multl(extract(j,1),
extract(j,1),3,1) )

(3,3) =

C code can be generated directly from this final
transfomed sgs! program by the KIDS system. The code
produced for this example is:

nseq sdgs_1l(nseq s)
{ nseq q =
rangel 1(
index 1(s,
rangel O(length(s))
)
)

return

insert(mult 1 (extract(q,1l),
extract(qgq,1)
)rd,1);
}

With CVL implementations of the primitves of 7 this
code can be directly executed on a wide variety of parallel
computers.

6. Discussion

Implementation Status

Most of the primitives of 9’ have been implemented in
CVL at the time of this writing. The transformations
have been implemented by our colleagues at Kestrel
Institute on the KIDS system. Combining these efforts
gives us an end-to-end system that can automatically
transform and execute Proteus programs. We are
currently executing using the sequential version of the
vector library, but attaining actual parallel execution
only requires recompilation on parallel hardware. We are
currently implementing the remaining language
primitives and investigating improvements to the
transformations that yield more efficient code.

Implications for sequential execution

In addition to providing a route to parallel execution of
high-level data-parallel programs, the transformations
can also be of use in a sequential setting. One of the
objections often raised to the iterator construct is that it
incurs substantial overhead in the repeated evaluation of
the iterator body. The transformation rules suggest,
however, that by replacing the iterators with vector
primitives, the overhead of repeated calls can be
eliminated.

Conclusions

We have described a simple but comprehensive
transformational framework to reduce arbitrary data-
parallel programs to vector operations. The class of
data-parallel expressions that can be transformed in this
manner includes irregular parallel computations (as found
in the parallel application of a function to each of a
collection of sequences of different length), recursive
parallel computations (as found, for example, in parallel
divide-and-conquer algorithms), and high-order parallel
function application (as found in the parallel reduction of
a sequence of values using an arbitrary function). In
each case the resultant CVL program operates on simple
vectors and can be executed with excellent load-balance
on a wide class of parallel machines. The transforma-
tions were implemented using the KIDS system and,
together with other transformations, form the basis of
our strategy to achieve parallel execution of prototype
programs by directed transformation.



Acknowledgments

We would like to thank Stephen Westfold of the Kestrel
Institute for his implementation efforts and improvement
of the transformation rules.

Bibliography

[Back78]

[BCS+90]

[Blel90]

[Blel92]

[BS90]

[Iver62]

[KLS+90]

[McCr87]

[MNP+91]

[MNP+92]

[More79]

[NP92]

[Prin90]

[PTHO1]

Backus, J., "Can Programming be Liberated
from the VonNeumann Style? A Functional
Style and its Algebra of Programs",
Communications of the ACM, 1978.
Blelloch, G., Chatterjee, S., Sipelstein, J.,
Zahga, M., "CVL: A C Vector-Library",
Draft Technical Note, Carnegie Mellon
University, 1990.

Blelloch, G., Vector Models for Data-
Parallel Computing, MIT Press, 1990.

Blelloch, G., “NESL: A Nested Data-
Parallel Language”, Technical Report
CMU-CS-92-103, Carnegie Mellon
University, January 1990.

Blelloch, G., Sabot, G., "Compiling
Collection-Oriented Languages onto

Massively Parallel Computers", Journal of

Parallel and Distributed Computing, 8(2),
February 1990.

Iverson, K., A Programming Language.
Wiley, New York, 1962.

Knobe, K., Lukas, J., Steele, G., "Data
Optimization: Allocation of Arrays to
Reduce Communication on SIMD
Machines", Journal of Parallel and
Distributed Computing 8, 1990.

McCrosky, C., "Realizing the Parallelism
of Array-based Computation", Parallel
Computing 10 1989.

Mills, P., Nyland, L., Prins, J., Reif, J.,
Wagner, R.,"Prototyping Parallel and
Distributed Programs in Proteus",
Proceedings Symposium on Parallel and
Distributed Processing 92. 1992.

Mills, P., Nyland, L., Prins, J., Reif, J.,
"Prototyping N-body Simulations in
Proteus", Proceedings IPPS 92, IEEE,
1992.

More, T., "The Nested Rectangular Array as
a Model of Data" APL79 Conference
Proceedings. ACM 1979.

Nyland, L., Prins, J., "Prototyping Parallel
Programs", Proceedings 1992 Dartmouth
Institute for Advanced Graduate Studies in
Parallel Computing Symposium, 1992.
Prins, J., "A Framework for Efficient
Execution of Array-Based Languages on
SIMD Computers", Proceedings Frontiers
90, 1EEE 1990.

Philippsen, M., Tichy, W., Herter, C.,
"Modula-2* and its Compilation",

[Sabo8&8]

[Schw70]

[Skil90]

[Smit90]

[SH86]

Proceedings Austrian Conference on
Parallel Computing, 1991.

Sabot, G., The Paralation Model
Architecture-Independent Parallel
Programing, MIT Press, 1988.

Schwartz, J., "Set Theory as a Language for
Program Specification and Programming",
Technical Report Computer Science
Department, Courant Institute of
Mathematical Sciences, New York
University, 1970.

Skillicorn, D., "Architecture-Independent
Parallel Computation", IEEE Computer 11,
Vol.23 No. 12 (Dec.), 1990.

Smith, D., "KIDS - A Semi-automatic
Program Development System", IEEE
Transactions on Software Engineering
Special Issue on Formal Methods in
Software Engineering Vol. 16, No. 9,
1990.

Steele, G. L., Hillis, W., "Connection
Machine LISP: Fine-grained Parallel
Symbolic Processing ", Proceedings 1986
ACM Conference on Lisp and Functional
Programming ACM, 1986.



