More Types for Nested Data Parallel Programming

Manuel M. T. Chakravarty
School of Computer Science & Engineering
University of New South Wales
Sydney, Australia

chak@cse.unsw.edu.au

ABSTRACT

This paper generalises the flattening transformation—a tech-
nique for the efficient implementation of nested data parallel-
ism—and reconciles it with main stream functional program-
ming. Nested data parallelism is significantly more expres-
sive and convenient to use than the flat data parallelism
typically used in conventional parallel languages like High
Performance Fortran and C*. The flattening transforma-
tion of Blelloch and Sabot is a key technique for the ef-
ficient implementation of nested parallelism via flat paral-
lelism, but originally it was severely restricted, as it did
not permit general sum types, recursive types, higher-order
functions, and separate compilation. Subsequent work, in-
cluding some of our own, generalised the transformation and
allowed higher-order functions and recursive types. In this
paper, we take the final step of generalising flattening to
cover the full range of types available in modern languages
like Haskell and ML; furthermore, we enable the use of sep-
arate compilation. In addition, we present a completely
new formulation of the transformation, which is based on
the standard lambda calculus notation, and replace a pre-
viously ad-hoc transformation step by a systematic generic
programming technique. First experiments demonstrate the
efficiency of our approach.

1. INTRODUCTION

Sisal successfully demonstrated that a thoroughly opti-
mised implementation of a functional language can chal-
lenge conventional Fortran code on high-performance archi-
tectures [6]. It did so, however, by providing essentially the
same sort of parallel programming model that its impera-
tive rival prescribed. It is our aim to take the next step
and to realise a drastically more convenient programming
model whose efficient implementation requires transforma-
tion techniques that are difficult to automate in the presence
of side-effecting computations. In concrete terms, we are
concerned with the efficient implementation of nested data
parallelism—a generalisation of flat data parallelism, which

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICFP ’00, Montreal, Canada.

Copyright 2000 ACM 1-58113-202-6/00/0009 ..$5.00

94

Gabriele Keller
Faculty of Information Technology
University of Technology, Sydney

Sydney, Australia

keller@socs.uts.edu.au

in turn is the model that is typically used in languages like
High Performance Fortran and C* [10]. Nested data paral-
lelism allows highly irregular parallel control and data struc-
tures, such as nested parallel loops, where the ranges of the
instances of the inner loop dependent on the index value
of the outer loop. Nested parallelism constitutes an attrac-
tive programming model and simplifies the implementation
of important parallel algorithms, such as computations over
sparse matrices as well as hierarchical n-body algorithms.
Nevertheless, for fine-grained algorithms, it is usually eas-
ier to understand and implement than control parallelism;
in addition, it comes with a language-based parallel cost
model [4].

Todays most portable implementation technique for nested
data parallelism is the flattening transformation, a program
transformation that maps nested to flat parallelism and that
was originally introduced by Blelloch and Sabot [5]. It
leads to efficient implementations on a range of high-per-
formance architectures in both the purely functional [7] and
the imperative case [9]. Nevertheless, imperative languages
face a serious problem here: Flattening is hard to auto-
mate in the presence of pointers and side effects [9]. Even
special purpose extensions of imperative languages require
serious restrictions [22]. This may ultimately confine im-
perative code to thread-based implementations of nested
parallelism [2, 20], which currently seem to require shared-
memory architectures—and certainly are not suitable for
vector processors. Moreover, modern processors tend to
include vector instructions—usually to speed up multime-
dia applications—that could be exploited by a flattening-
based compiler. In summary, flattening is important, be-
cause nested data-parallelism is more expressive, whereas
flat data-parallelism is easier to implement.

Originally, flattening suffered from a lack of support for
advanced data types, such as general sum types, recursive
types, and higher-order functions, and it did not allow sep-
arate compilation. In other words, programs were confined
to operate over arrays containing basic types like integer
numbers and tuples thereof; furthermore, the source code of
the complete program—including all library modules—had
to be available during compilation [5]. Subsequent research
extended flattening to cover higher-order functions [23] and
recursive types [16]. In this paper, we close the remaining
gap to modern functional languages like Haskell and ML. We
rephrase the transformation in the standard lambda calcu-
lus setting, extend it to the full range of algebraic types
(in particular, user-defined sum types), and modify it such
that it allows for separate compilation of program modules.

The latter is a consequence of replacing a previously ad-hoc
transformation step by a systematic generic programming
technique, which was recently introduced by Hinze [12, 11].
First experiments with our implementation techniques on
a Cray T3E led to absolute speedups when compared to a
sequential implementation of the same algorithm in C.

In summary, the main contributions of this paper are the
following:

o We rephrase the flattening transformation in a stan-
dard lambda calculus setting with free use of higher-
order functions, currying, and lazy evaluation.

o We extend flattening to cover the full range of types
supported in languages like Haskell and ML.

e We enable the use of separate compilation by virtue of
expressing part of the transformation in a systematic
generic programming framework.

From the perspective of sequential programming and deno-
tational semantics, these extensions might not seem very
spectacular. However, under the constraint of achieving an
efficient data parallel implementation, they become formi-
dable challenges. In particular, the last two have been recog-
nised as being open problems for the last five years." Over-
all, the results presented in this paper allow us to realise a
flattening-based implementation of nested data parallelism
as a conservative extension of a standardised language like
Haskell or SML, instead of relying on special purpose lan-
guages, as it was necessary until now.

The reminder of the paper is structured as follows: Sec-
tion 2 briefly discusses a data-parallel extension of Haskell
and outlines the transformation techniques detailed in the
rest of the paper. Section 3 introduces a lambda calculus
supporting parallel arrays. Section 4 discusses a flattened
representation of data types. Sections b and 6 present the
core transformations of our extended flattening approach.
Section 7 briefly discusses the handling of polymorphic func-
tions under a separate compilation scheme and the problems
induced by reference types in parallel functions. Finally,
Section 8 reports some benchmark results, reviews related
work, and concludes.

2. NESTED DATA PARALLELISM

The following brief introduction to nested data parallelism
is based on an extension of Haskell by parallel arrays.? A
parallel array is an ordered sequence of values that comes
with a set of data parallel operations; moreover, any parallel
array is distributed across the available processing nodes in
the case where we execute the program on a distributed
memory machine.

2.1 Haskell with Parallel Arrays

We denote the type of parallel arrays containing elements
of type 7 by [|7]]. We provide similar syntactic support for
parallel arrays as for lists—in particular, [|ai, ..., an|] con-
structs a parallel array. List functions, such as map and

!There was indeed a Usenet posting in which Guy Blelloch
encouraged to look into these problems.

2A corresponding extension as well as the implementation
outlined in the remaining sections applies also to other typed
functional languages like Standard ML or Clean.

95

replicate, have parallel counterparts distinguished by the
suffix “P”, i.e., we have

mapP (o= B) = [le]l = [B]]

— map a function over a parallel array
replicateP :: Int — o — [|of]

— create an array containing n copies of a value

Furthermore, we use the infix operators (!|) and (++) to
denote indexing and appending of parallel arrays.®

The essential operational difference between lists and par-
allel arrays is that collective operations, such as mapP, filterP,
replicateP, and so on, execute in parallel. This holds even
for nested uses of these operations—so,

mapP (mapP (+ 1)) (|11, 21, I3, 4, 501, {Ill, (61

increments all numbers in the nested parallel array in a sin-
gle parallel step. We can alternatively denote this computa-
tion by using an array comprehension:

llz +1]2 < as,2s < [[[I1,2[], (13,4, 5[], [}, [6[][]]]

The parallel semantics entails a couple of significant dif-
ferences between lists and parallel arrays: (1) Parallel arrays
are always finite; (2) the construction of a parallel array is
strict in all elements; and (3) there are no constructors (such
as [] and Cons) for construction and pattern matching. The
third point is not absolutely necessary, but it encourages
array manipulation by collective operations, which are re-
quired for expressing data parallelism. More background
on this style of parallel programming is, for example, pro-
vided by Blelloch [4], who also discusses the two examples
presented next.

2.2 Using Nested Data Parallelism

An important irregular data structure in high-performance
computing are sparse matrices. If there is no extra informa-
tion regarding the structure of a sparse matrix, it can be
stored efficiently in the so-called compressed row format,
which represents all non-zero elements of a matrix row in a
list of column-index/value pairs—a list of such sparse rows
comprises a sparse matrix:

[|(Int, Float)||
[| SparseRow||

type SparseRow = — index, value

type SparseMatriz =

Now consider the multiplication of a sparse matrix with a
dense vector, resulting in another dense vector. It can be
expressed by nesting three levels of parallel operations:

smum :: SparseMatriz — [|Float|] — [| Float||
smum sm vec =
[[sumP [z * (vec!| col) | (col, z) + row]|] | row + sm||

products of one row

The inner array comprehension computes all products of a
single row of the matrix, sumP adds the products in a par-
allel reduction, and the outer comprehension specifies that
the products and sums for all rows should be computed in
parallel. Overall, the complete matrix-vector multiplication
has a parallel depth complexity proportional to the loga-
rithm of the longest row (cf., [4] for details). It is possible
to achieve the same behaviour in a language supporting only

®We cannot use the simpler symbols (!) and (4), as they
are already used in Haskell.

flat data-parallelism, but the code is significantly more in-
volved.

As a second example of a highly irregular data parallel
algorithm, let us consider quicksort. The following definition
of gsort holds little surprise for a functional programmer:

gsort = Ord a = [laf]] = [«
gsort zs = if nullP zs then

il

else

let
m = zs!| (lengthP zs ‘div‘ 2)
ss = [ls| s+ zs, s < m
ms = [|s| s zs, s == m|
gs = [ls| s+ zs, s > m]
sorted = [|gsort zs' | zs' « [|ss, gs]||]

in

(sorted !| 0) +H ms +4 (sorted ! 1)

There is, however, one peculiarity. The recursive calls to
gsort are performed in an array comprehension ranging over
a nested array structure. Given the parallel semantics of
array comprehensions, the two recursive calls are executed
in parallel—this would not be the case if we were to write
gsort ss ++ ms Ht+ gsort gs!

The parallelism in g¢sort is obviously highly irregular and
depends on the initial ordering of the array elements; never-
theless, the flattening transformation can rewrite the above
definition of gsort into a flat data parallel program. Thus,
in principle, it would be possible to achieve the same par-
allel behaviour in Fortran—it is, however, astonishingly te-
dious. Hierarchical n-body codes, such as the Barnes-Hut
algorithm [1], exhibit a similar parallel structure as gsort
and there is considerable interest in their high-performance
implementation. We showed that rose trees of the form

data Tree = Node Particle || Tree||

lend themselves to a particularly elegant nested data paral-
lel implementation of the Barnes-Hut algorithm, which our
program transformations can compile into efficient code [16].

In addition to the obvious uses of sum types, the exten-
sion of flattening to the full range of Haskell’s types, as
presented here, allows a declarative type-directed control of
data distribution. Consider the operational implications for
an array of arrays [|[|Int|]|] versus an array of (sequential)
lists [|[Int]]]. On a distributed memory machine, the integer
elements of the former will be evenly distributed over the
available processing elements; in particular, if the subarrays
vary substantially in size, they may be split up across pro-
cessor boundaries. Consequently, the potential parallelism
over the nested array is maximised. In contrast, arrays of
lists are optimised for sequential operations over the sublist;
nevertheless, the sequential processing of all the sublists is
expected to proceed in parallel. In other words, we have a
parallel operation consisting of a number of sequential steps
inside. Overall, the choice between different mixes of paral-
lel and sequential structures allows the programmer to influ-
ence the granularity of parallel operations, which is known
to help implementing efficient parallel programs.

2.3 Compilation by Transformation

Figure 1 outlines the structure of our compilation system.
The present paper is concerned with the first two transfor-
mation steps in the grey box: vectorisation and specialisa-

96

I Nested DP Language l

Vectorisation

I Flat DP & Nested Structures l

Specialisation

I Flat DP & Flat Structures l

Optimisation

Unfolding Primitives

I Language of Distributed Types I

Code Generation

I C & communication library I

Figure 1: Outline of the compilation system

tion of array primitives. Together, these two steps realise the
flattening transformation, i.e., they transform parallel com-
putations given in the nested data-parallel style into equiva-
lent computations expressed in the less expressive, but easier
to implement flat style.

To gain an intuitive understanding of the purpose of the
first two transformation steps, let us reconsider the initial
example of this section:

mapP (mapP (+ 1)) (|11, 21, I3, 4, 501, [Ill, (61

The purpose of the first step of flattening—i.e., of vector-
isation—is to provide an alternative, parallel version of each
scalar function occurring in the program; for example, any
scalar function over integers is vectorised to a function that
executes the same operation elementwise over parallel ar-
rays of integers. In other words, a function f is pointwise
lifted into vector space, which we denote by f'. Primitive
functions, like +, are already provided by the system in a
vectorised form. Overall, we can represent our example by

let
85 =

] (02, 20, 03, 4, 500, 1, 1600

zss +1 subdivideP (replicateP 6 1) [|2, 3, 0, 1]]

The expression replicateP 6 1 givesus [|1, 1, 1, 1, 1, 1]]. The
array [|2, 3, 0, 1|] captures the nesting structure of zss, i.e.,
it equals [|lengthP xs | zs + zss||—we call it the segment de-
scriptor of xss as it specifies the segmentation of zss into
subarrays. The auxiliary function subdivideP imposes the
given segmentation structure on the array passed as the first

argument. Finally, +1" adds the two arrays elementwise in
parallel.

At this point, it might seem as if we could simplify the
resulting code by introducing an auxiliary function inc' in-
stead of using replicateP in combination with +T. However,
we then also have to lift the definition inc = (+1), which
will contain replicateP and +' in exactly the same way as
we used these two functions above. So, nothing is gained.
We will discuss the details of the vectorisation transforma-
tion in Section 5. We do this for the first time in a frame-
work that uses a conventional lambda calculus notation and
allows currying and lazy evaluation.

So far, it might appear as if we would need all primitive
and user-defined functions lifted to parallel arrays of arbi-
trary nesting depth. A central insight of [5] is that this is
not necessary and that indeed elementwise and once lifted
versions of all function suffice. Moreover, it is advantageous
for parallel execution to separate the structure of each par-
allel data structure from its contents. In the above example,
it is useful to separate the segment descriptor of zss from
the integer values of the nested array. We realise this by a
transformation that implements all parallel arrays of com-
plex types by parallel arrays of integers and floating point
numbers together with sequential structures (like products)
that combine a set of these primitive arrays into a compound
structure. Operations on arrays of complex types are spe-
cialised correspondingly. Our example, can be represented
as

let
58

in

(fst xss, (snd (fst xss), snd (snd xss) +' replicateP 6 1))

((4, 112, 3, 0, 101), (6, [I1, 2, 3, 4, 5, 6]]))

All structure manipulations, such as subdivideP are replaced
by simple projections and + is needed only in its once lifted
form. The details of the concrete representation of arrays of
complex types shall be given in Section 4 and the specialisa-
tion of operations on these arrays in Section 5. Compared to
previous work, we extended the concrete representation to
cover sum types; moreover, we define the specialisations of
arrays and array operations for the first time as type-indexed
definitions in a generic programming framework. As a re-
sult, specialisations is now also possible in the presence of
separate compilation.

Whilst the fully flattened program exhibits parallelism in
a form suitable for a wide range of parallel architectures,
the code is usually rather fine-grained and completely lacks
any consideration for exploiting the memory hierarchies of
modern processor architectures. We use a combination of
an intermediate language that makes distribution explicit in
the type system and aggressive deforestation techniques to
produce code that performs well on networked, cache-based
processors [17, 15]—this is handled by the transformation
steps following the grey box in Figure 1 and not further
discussed in the present paper.

Currently, the only alternative to using the flattening trans-
formation for the implementation of general nested paral-
lelism are thread-based compilation techniques [2, 20]. Due
to the very fine granularity of the outlined style of nested
parallel programming, it is however unclear how a thread-
based approach can be efficiently implemented on distributed-
memory architectures. Moreover, flattened code is suitable
for multimedia vector architectures and can exploit the vec-
tor instructions that are usually included into modern high-
performance processors.

97

24 Restrictions

Throughout this paper, we impose one restriction on the
use of parallel arrays by the user: The elements of a paral-
lel array may not contain functionals. We do this for two
reasons:

e Functions in parallel arrays imply control parallelism.
So for example, the expression [|f a | f + [|foo, bar([]
would obviously require us to execute the evaluation
of foo a and bar a in parallel and breaks the paradigm
of data parallelism.

o If we execute any seemingly control parallel code se-
quentially, the addition of functionals in parallel ar-
rays would significantly complicate the technical part
of this paper without bringing any obvious gain.

Nevertheless, the presented program transformations will in-
troduce arrays of functions, but they will always contain
repetitions of the same function, so that we can guarantee
data parallel execution.

Flattening in its current form is geared towards handling
irregular parallelism, at the expense of not optimising reg-
ular parallelism. It would be preferable to recognise regular
structures and treat them specially. Particularly interesting
seem shape-based approaches, e.g., those of SAC [25] and
GoldFISh [14], as flattening already distinguishes between
shape and data.

3. A LAMBDA CALCULUS WITH PARAL-
LEL ARRAYS

We formalise our extended flattening transformation based
on a simply-typed lambda calculus supporting parallel ar-
rays; we call the calculus Apa. We exclude parametrised
types and mutual type recursion from the calculus to re-
duce notational noise, but briefly discuss these features in
Section 7.1. The calculus Apa has the syntactic structure
formalised in Figure 2(a).

The construction of type terms is standard and includes
boolean values (Bool) and integers (Int) as an example for
primitive types;* the symbol () denotes the unit type. Our
only extension to the type structure are parallel arrays, de-
noted [|7|], where 7 is the element type. We will see later
that, for the purpose of the concrete implementation, we
can regard [|7|] as a typed-indexed type, i.e., a type assum-
ing different concrete representations in dependence on the
type parameter 7 [11]. It will be notationally convenient
to distinguish parallel arrays indexed by Bool and Int, i.e.,
[[Bool|] and [|Int] from the concrete representation of an ar-
ray consisting of Bool and Int values. Therefore, we denote
the latter by BoolArr and IntArr, respectively.

Expressions (or lambda terms) are typed and make value
recursion explicit. Variables are explicitly typed—for exam-
ple, the expression Av'™.e denotes a function over integers—
but we often omit type superscripts if they are clear from
the context. We assume a set C of constants and primi-
tive operations. The symbol () is overloaded to denote a
constant representing the single element contained in the
unit type (); furthermore, C contains the usual arithmetic

“In the presence of sum types, defining Bool as a basic type
may seem redundant. However, we need arrays of Bool in
the flattened target representation of sum types and, thus,
require a basic type Bool to avoid a cyclic definition.

Types T — ()|Bool|Int (basic)
| Vv (variable)
| TixTs (product)
| Ti+T: (sum)
| T1 — Tz (functional)
A (type recursion)
| [T (parallel arrays)
Expressions E — C (constant)
| Vv (variable)
| AV'E (abstraction)
| EiEs (application)
| wV'.E (value recursion)

()

Products

(V) #aB—axp
fstp axf—oa
sndiag) axB—f
Sums
left(n gy = a—a+p
right 5 = B—>a+p
case(a g,y = (@ =) X (B=7) x (a+p) =y
Parallel Arrays
rep(q, woaxInt = [|of — replication
leny = [|af] = Int — length
(Hreay) = flef] x el = [l — concatenation
(Neay) lef] X Int — o — indexing

(@ = B) x [laf] = [5]]
(b)

mapP 4) — dp application

Figure 2: Grammar and primitives of Apa

and logic operations on boolean and integer values. Some of
the primitive operations are type indexed, i.e., parametrised
with a type—we will later see that they are not simply poly-
morphic. Figure 2(b) displays a list of Apa’s primitive opera-
tions. Note that we abbreviate replicateP to rep and lengthP
to len. Moreover, we distinguish concrete functions, such as
(+H1nt) :2 IntArr — IntArr — IntArr, from their type-indexed
counterparts, such as (+(ney) :: [|Int]] = [|Int]] — [|Int]. We
often drop the type index when it is clear from the context
and we usually write () and (!|) infix and use Haskell’s sec-
tioning rules. We also use (let v = e; in e2) = (Av.e2) e1.
Although, for an efficient implementation of a wide range of
data parallel algorithms, we need some more functions (like
permutations, reductions, and scans), we omit them here as
their inclusion would not lead to any additional technical in-
sights. See, for example, [15] for a comprehensive discussion
of the required functions and their parallel implementation.
Regarding mapP, we assume that the restrictions outlined
in Subsection 2.4 are met.

We will neither formalise the type system nor the seman-
tics of Apa due to the limited space and as both follow the
standard definitions discussed in textbooks, such as [19].

4. FLATTENED PARALLEL STRUCTURES

Parallel operations over flat arrays of primitive data types
(such as integer and floating-point numbers) can be per-
formed particularly easily and efficiently, such arrays are the
preferred data structure in Fortran programs for exactly this
reason. Hence, parallel processing encourages the decompo-
sition of complex data structures such that the structure
information is separated from the primitive data values that
are stored in the structure [5, 23, 14]. We call this a flat-
tened data structure representation. In previous work [16],
we demonstrated that the program transformation that re-
places the source-level representation by the flattened repre-
sentation is best understood as a specialisation procedure of
the primitive functions operating on these data structures.
This insight allowed us to find an efficient flattened repre-
sentation for recursive data structures, and thus, to apply
the flattening transformation to important algorithms, such
as hierarchical n-body codes.

In Section 6, we shall elaborate on this specialisation pro-

98

cedure. However, first we will discuss, in the present sec-
tion, a flattened representation of parallel arrays; and then,
in Section 5 the vectorisation transformation, which gener-
ates for each function in the program a vectorised variant
operating on a whole array of operands.

4.1 Separation of Structure and Data

Our flattened representation of parallel structures obeys
two principles:

1. Parallel arrays of complex types are represented by a
complex type that has parallel arrays of primitive type
at its leafs.

2. Functions occur in two variants: in a sequential and in
a vectorised form.

The first principle was used by Blelloch & Sabot [5] for a
restricted set of data structures: An array of pairs is repre-
sented by a pair of arrays and an array of arrays is repre-
sented by a segment descriptor and a flat array. The segment
descriptor encodes how the elements of the flat array are to
be partitioned, for example,

10,20, 13.4,50, 0, [6) = {]

We previously pointed out that we can use the same idea
to represent recursive structures, as long as we use a segment
descriptor at each level of the recursion [16]. The flattened
representation of a rose tree (cf. Subsection 2.2), then, be-
comes a list whose length equals the depth of the represented
tree, where a segment descriptor in each list node specifies
the branching structure of the tree. However, the most dif-
ficult point here is not so much the flattened representation,
but specialisation of the primitive operations over parallel
arrays to the flattened structure. We will return to this topic
in Section 6.

Interestingly, we can apply the principle also to sum types.
Given an array of a sum, [|71 + 72|, we can represent it by
one array for each of its components 71 and 72 plus an addi-
tional array—called the selector—that determines in which
order the component elements are placed in the compound
array. We encode the latter by an array of boolean values,
where false corresponds to elements from type 71 and true to

segd
data

elements from type 72. As an example consider the following
parallel array of sequential lists:

(0, 11,21, 0, 11, (311
= ([[false, true, false, false, truel], ([|(], [], [IIl, [I[1, 2], [3]11))

Sequential lists are formed from a sum type, which distin-
guishes the two alternative constructors [] (nil) and Cons.
Hence, all empty lists are collected into one array and all
non-empty lists in the other array. This process is recur-
sively repeated for the array holding the non-empty lists.
The process terminates after as many steps as the length of
the longest list. The last node of the flattened representation
has the form ([|[], (L, L)), where L represents an undefined
value (see also Section 6.1). The empty selector indicates
the termination of the recursive structure, which means that
the contents of the two substructures is irrelevant—none of
the array processing operations will touch these components
when they encounter an empty selector. Figure 3(a) defines
the representation of type-indexed array types by primitive
arrays.

Finally, recognising the second of the previously stated
two principles, we replace any function by a pair consisting
of the original function and a vectorised variant of that func-
tion. Roughly speaking, whenever a function is applied, the
original function or its vectorised version is used in depen-
dence on whether the application is within a sequential or a
data parallel computation. Within the vectorised version of
a function, all other functions are just represented by their
vectorised form—the sequential form is never needed.

The definitions in Figure 3 combine all these rules. Part (a)
represents arrays of compound types by compound types of
simple integer and boolean arrays. Furthermore, for a given
type 7, F[r] from Part (b) yields a representation of that
type, where all functions are represented by pairs comprised
out of their normal and vectorised variant. Outside of paral-
lel arrays, we merely replace functions by pairs of functions,
where the vectorised variant forms the second component.
The type transformation F[-] does not explicitly cover the
case of parallel arrays as Part (a) eliminates all [| - |] con-
structors and there cannot be any enclosed functions due to
the restriction discussed in Section 2.4.

By virtue of the mapping F[-] it is easy to see that the
type [|petree.Int x [|¢ree|]||—a parallel forest of rose trees stor-
ing integers—is represented by

wetree. (Int x [|Int]]) x (Int x [|Int]] X tree)
—_———— ——

(nodes) (segd)

where (nodes) represents the node values of one level of the
forest and (segd) the segment descriptor partitioning the
next level of the forest into subtrees. This structure is, in
effect, well suited for the parallel implementation of the spa-
tial decomposition trees that are, for example, frequently
used in hierarchical n-body algorithms [16].

In Apa, the previously mentioned type of parallel arrays
containing sequential lists, [|[@]]], can be formalised straight
forward as [|plist.() + (o x list)|]. According to Figure 3, it
has the following flattened representation:

pelist.((Int x [Bool[]) x (Int x (o] x list)))
(selector)

Generally, given a function f :: 7 — o, the correspondence
between the flattened representations F[r] and F[o] of the

99

types and the vectorisation and specialisation transforma-
tions presented in the next two sections is as depicted in the
following commuting diagram:

N

T o
}'I[-]]l lf[[-]]

Flr] ——— Fleo
[[]] fst(VIfD) [[]]

We will discuss the vectorisation transformation V[-] in the
following section.

5. VECTORISATION OF FUNCTIONS

We already noted that our formulation of the flatten-
ing transformation consists of two steps: (1) Vectorisation
of functions and (2) specialisation of primitive operations
to the concrete representation of parallel data structures.
These two steps are discussed in the current and the follow-
ing section, respectively.

Vectorisation requires us to replace every function f of the
original program by a pair (f', f1), where all local functions
in f' did undergo the same transformation. Furthermore,
f1is f lifted pointwise into vector space, i.e., it is a variant
of f that can perform f on all elements of a parallel array
in a single parallel step—see also Subsection 2.3. Let us
consider, for example, the source expression [|[z + y | z + e|]
(note that y is free), which in Apa becomes

let f = Az™.2 + yin mapP f e

Let us assume that in the target language, the primitive op-
eration (+) has type (Int x Int — Int, [|Int]] x [|Int]] — [|Int[]},
i.e., it is a pair of scalar addition and elementwise vector ad-
dition. Then, the lifted variant fT of the abstraction bound
to f would be Azl™! (snd (+)) (z,rep (len z) y)—i.e., vec-
torised addition (denoted by (snd (+))) is applied to the ar-
ray argument z and a suflicient number of copies of y (the
value of y is copied, because it is free, i.e., a constant scalar
in this example).

Previous formalisations of the flattening transformation
did only handle named functions, and thus, distinguished
between scalar and lifted variants of functions using names,
such as f and f7. In the present setting based on the lambda
calculus, we cannot follow this approach; instead, we liter-
ally replace every lambda abstraction by a pair of functions.
In our example, we thus get

let
f= (A" (fst (+)) (z, y),
) Azl (snd (+)) (z, rep (len z) y))

(sndf)e

Note how the mapping of the scalar function is replaced by
a direct application of the lifted variant. Unfortunately, we
cannot simply replace mapP by snd in the case of nested
occurrences of mapP—we will return to this point in the
next section, for the moment let us just consider the lifting
of functions. In this example, the scalar version of f is not
needed anymore, but in general, a function may occur both
in sequential and parallel contexts.

There is one more point that should be noted about the
previous example. The variables z and y were treated in

1on = Int

[|Bool|] = Int x BoolArr

[|Int(] = Int X IntArr

(I x 72| = [|m] x [|72]]

[[71 + m2]] = BoolArr x [|71]] X [|72]]
lr = mf] = [|m]] = [|7]]

Q-0 = [nt]] x [I7(]

()

Figure 3: (a) Flattened representation of parallel types

different ways in the body of the lifted function. By lift-
ing the function, the argument variable z becomes vector-
valued (i.e., it is raised from type Int to [|Int[]). We call such
variables parallel variables. In contrast, y is a scalar vari-
ables—it is not lifted into vector space.® Moreover, we call
the number of values over which a parallel variable ranges,
the size of the parallel context. In the previous example, the
size of the parallel context is lene, i.e., the number of times
that the body of [|z + y | z + e]] is evaluated.

Now, we are ready to formalise vectorisation. The func-
tion V[-] takes an expression and yields its vectorised form
(z may either be a constant or a variable):

VI w (E: o) = (E: Flo])

V(=] =z

Vawm.e] = T y[e], — sequential
Aol Ty — parallel

Vlerez] = (fst V[es]) (V[ez])

Voo™ €] = oo™ Y[e]

Note how types are transformed by the function F[-] flatten-
ing types, abstractions are represented by pairs of functions,
and applications consistently choose the first—i.e., the origi-
nal variant—of each abstraction. Usage of the lifted variants
depends on the concrete definition of mapP, which we shall
consider in the following section. First, we formalise the
lifting process, where e means lifting an expression e in
a context of parallel variables vs.

() w (Ezo) = (E: o))

glvwe | z€ (v:ivs)= =z

| otherwise = rep (lenv)z
()\UT.G)TM —)\U[\T\].e']‘(v:vs)
(er e2)"" = (/") (e2™)
(o)™ = pooll7] g Tort o]

The first equation distinguishes between parallel and scalar
variables. The former are treated as being a parallel array
already, whereas the latter are replicated according to the
size of the parallel context—which, as we see in the third
equation, is the head of the list of parallel variables. The
rule for recursion p,v.e puts the names of recursive function
at the end of vs to avoid interfering with determining the
size of the parallel context.

5The use of the word scalar might be a bit misleading. In
fact, y could be an array-valued variable and we would still
call it scalar. We are interested in whether or not a variable
has different values in the parallel computation space of a
lifted operation, not in whether it refers to a scalar value or
an array.

100

FI'1 2 T—>T

Flz] | ze CUV =2z

.7:|IT1><T2]] = .7:|IT1]]><.7'-[[T2]]

Flr + 2] = F[n] + Fr]

.7:|IT1—>T2]] = (.7:|IT1]]—>.7:|IT2]])
X ([Jraf] = [I72[])

Fluev.7] = pev.F[r]

(b)

and (b) pairing of normal with vectorised functions

At first sight, it might seem as if the rules do not work for
functions f, when we have f7* with f & vs. However, con-
sider that [|11 — 72]] = [|1]] = [|72[], according to Figure 3,
and that we yet have to define the specialisation of rep,, _, 5.
As we will see in Subsection 6.1, we have

repo—p) (N, f) = snd f

Due to the transformation performed by V[-], the value of
f will be a pair whose second component contains the lifted
variant of the function. In other words, we implement a
vector of copies of one function by the vectorised version
of that function—instead of applying a function multiple
times in parallel to the different elements of a parallel array,
we apply its vectorised counterpart once to that array as a
whole.

6. SPECIALISATION OF PRIMITIVE OP-
ERATIONS

As already mentioned, one of the central ideas of our ap-
proach to handling recursive data types in flattening is the
use of a type-based specialisation procedure for the prim-
itive operations of Apa [16]. In the following, we will im-
prove our previous approach by formalising the definition
of the primitive operations in the style of generic program-
ming; consequently, we can, then, replace our previous ad
hoc specialisation procedure by the systematic specialisation
of Hinze’s generic programming framework [12, 11]. This
not only provides our approach with a formal foundation,
but also allows us to flatten the full range of data types sup-
ported in languages like Haskell and ML. Moreover, the new
specialisation technique is applicable in the presence of sepa-
rately compiled modules. This was neither the case with our
previous specialisation routine nor with other formulations
of the flattening transformation, as in both cases all para-
metric polymorphism had to be removed from the program
by generating appropriate instances. This is no longer the
case as Hinze’s transformation generates generic definitions
that use function-valued arguments to enable their use on
all instances of a parametrised type.

6.1 Operations on Parallel Structures

The most interesting operations are those on parallel arr-
ays—in our definition of Apa, these are (rep), (+4), (!]), len,
and mapP. In order to reach an efficient parallel implemen-
tation of these operations, we select the flattened form out-
lined in Section 4.1 as the concrete representation for parallel
arrays. For an parallel array [|7]], this concrete representa-
tion depends on the concrete type 7; thus, we can regard [- []
as a type-indexed type [11]. Correspondingly, we understand

a primitive p(,y operating on arrays [|7|] as a type-indexed
function. In other words, in dependence on the type in-
dex, we can choose an appropriate flattened representations
for each parallel array and array primitive. This facilitates
high-performance parallel execution, as the flattened rep-
resentation consists of nothing but scalars, products, func-
tions, and arrays of integers and booleans. In particular, the
only concrete operations needed on parallel arrays are those
operating over arrays of integers and booleans. All others
are generated by a specialisation procedure from the generic
definitions that we discuss in this section. As mentioned in
Section 3, to separate the concrete operations over parallel
arrays of integers and booleans notationally from the generic
operations, we write them without the angle brackets—for
example, we write rep, instead of rep ..

6.1.1 Data Parallel Application

We saw in Section 5 that—after vectorisation—the primi-
tive mapP merely has to apply the second component of the
pair that represents the mapped function. The situation is a
little more involved in the case where applications of mapP
are nested (as in the example from Subsection 2.3). In this
case, the inner use of mapP itself is lifted and we have to en-
sure that we do not need any of the innermost functions in a
form that is lifted more than once. In fact, already Blelloch
& Sabot [5] pointed out that in the nested case, we can use
once lifted functions if we ignore the additional structure
information (i.e., segment descriptors) of the array-valued
argument. Moreover, the result will require the same struc-
ture information as the argument. See [23, 18, 15] for a more
detailed explanation.

Overall, we can define mapP by the following pair of func-
tions, which represent the conventional and lifted variant,
respectively:

mapP 2 Fl(a = B) x [le] = [I1811]
mapP (f,a) = (snd f a,
(fst a, f (snd a)))

To understand the lifted variant, we have to take the repre-
sentation of arrays of arrays as a pair of segment descriptor
and data array into account and have to recognise that an
array of functions is realised as a simple function over arrays
(not as a pair of functions). Both facts are apparent from
the definitions in Figure 3.

— sequential
— lifted

6.1.2 Replication

Generally, there are three class of operations over arrays:
(1) those that increase the nesting depths, (2) those that
maintain the nesting depths, and (3) those that reduce the
nesting depths. The generic definitions of the members of
each class are similar, and thus, we chose a member of each
for inclusion into Apa.

Replication belongs to the first class—it takes a value of
type 7 to [|7]]. Like in the case of mapP, we need both a con-
ventional and a lifted variant. To keep the definitions read-
able, we will define them independently, as rep® and rep?,
respectively, and imply rep = (rep?, rep*). Furthermore, we
will use an equational notation, instead of explicit lambda
abstractions and recursion (the translation to plain Apa is
straight forward).

rep,, i Fle] x Int — F[le]

rep?m (n,z) = n

replny (n,2) = (n,repy, (n,z))
rep?Bool) (n,z> - <n7 repgool <n,x))
rep?axm (n,z) = <rep(<’a> (n,fst z), rep?m (n,snd z))
replaip) (n,2) =
if n == Othen
<rep(()lnt) <070 a(J—vJ->>
else
case

(Ax"<repBool <n>fa|5e>> (rep?a) <n>1">7 rep?m <0>J—>>>)
(A" (repgoq (n, true), (reply, (0, L), replg, (n,2"))))

z
repl, 3 (n,z) = sndz
rep(apy (n,2) = ifzz == 0((‘);h0e>nJ_>
reP(Int) » Y/
else

rep(,) (n,)

Here, we use the symbol | to denote subexpressions whose
value is irrelevant—in a lazy language, this might indeed be
a diverging value. In any case, the definition of the primi-
tives ensures that these values are never touched. Further-
more,

rep(yy = [lof] x Int — [|fle]]

represents, so called, chunkwise distribution. It creates a
parallel array from repeated occurrences of a shorter array.
As its definition is tedious, but not very surprising, we omit
it—see [16, 15] for details on chunkwise operations and why
it is worthwhile to treat them specially on distributed mem-
ory machines.

Finally, here is the definition of the lifted variant of dis-
tribution:

rep;, = Flllefl] x FIint(]] = FI{le]
rep%m (ns,zs) = (ns,sum ns)

repbm (ns, zs) = (ns, (sum ns, rep},, (ns, zs)))
rep%BOO” (ns,zs) = (ns, (sum ns, rep,l30OI (ns, zs)))
rep%mxm (ns,zs) =

(ns, <repza> (ns, fst zs), rep%m (ns,snd zs)))
repza_,,_B) ns, xs) =
let
sel = fstas
left' = rep}, (packP (sel , ns), fst (snd zs))
1
(

)

right' = rep(s, (packP {not" sel, ns), snd (snd zs))
in
(ns, (repgy (ns, selector), (left’, right')))

rep(,_,p (ns,zs) = snd zs

rep{gap (ns,as) = rep(}y (ns,as)

The only difference in the structure of the result of the lifted
from the conventional variant is that the former has an ad-
ditional segment descriptor. In the case of distributions,
this segment descriptor coincides with the value of the argu-
ment ns. The function sum is another primitive of the target
language—it implements parallel reduction on arrays of in-
tegers. Furthermore, packP :: [|Bool|] x [|a]] = [|a|] removes
all elements from the second argument that correspond to
values of false in the first argument—we do not formalise the
definition of packP here, as its structure is not unlike that of
concatenation (both operations preserve the nesting depth
of the structures they operate over).

6.1.3 Concatenation

Next we define the append functions (+H) as an example
of a primitive that maintains the nesting of its arguments.

(Hr o)) = Fllledll < Fllledl] = Flllall

rsHE()y Ys= xs+ys

st ny ys = (fst xs + fst ys,snd s +Hne snd ys)

25+ (Booly Y8 = (fst zs + fst ys,snd xs H-poor SN ys)
st (axpyys = (fst xs +H(q) fst ys, snd xs H(gy snd ys)
TsHt(atp) Ys =

(fst zs H+(Booly fst ys,
(fst (snd zs) +H(qo) fst (snd ys),
snd (snd zs) +H4(y snd (snd ys)))
5 HE (o) Y5 = 5 (o YS

Note that the case +4 (o) is not covered. It is not needed,
as the transformations do not generate such uses of (+#)
in the presence of the restrictions from Subsection 2.4. For
brevity, we omit both the definition of chunkwise append
(+#+) and of the lifted variant.

6.14 Indexing and Length

Finally, we have the simplest case—namely that of an
operation reducing the nesting depth of its structured argu-
ment. The prototypical example for this case is indexing:

() # Fllall x Int — F[a]
asllipy =0

z8 !|<Int> i = snd 8 !|int ¢

8 ! gooty @ = snd s !Bool i

@8 ! yup i = (fstas!|,, i, sndas!| g i)
28! (a1p) =

if (fst zs !| g,y @) then
snd (snd zs) !] 5, i
else
fst (snd @s) ! ,, @

zs!| i==z!% n
(lledl (@)

Like in the definition of (++), we do not need a case for
the type index a — S, as it is guaranteed not to occur. It
is interesting to note that indexing of parallel arrays whose
elements are of complex type, e.g., arrays of lists [|[@]|] is not
a constant time operation. As the equations for product and
sum types show, the cost is proportional to the depth of the
extracted element. This might seem peculiar, but is in fact
a natural consequence of a fully vectorised—and thus, per-
fectly load balanced—computation. The indexed subterm
may be located on a single processor and must, thus, be
communicated upon extraction, which in turn will generally
entail touching all its sub-structures. In fact, even if we in-
dex a parallel array of integer values, the extracted value
generally has to be broadcast to all processing nodes. This
property of the execution model clearly leads to inefficien-
cies if followed stoically. More generally, this is an instance
of the observation that overly aggressive load balancing ac-
tually can lead to less efficient code. We have discussed so-
lutions to this problem in previous work [15, 17], which are
employed in the stages following the grey box of Figure 1.

The length of an array is explicit in the flattened represen-
tation, so we will not give a formal definition of the primitive
len here.

102

6.2 Operations on Sequential Structures

In contrast to the operations on parallel arrays, operations
on sequential structures—such as products and sums that do
not occur as elements of a parallel array—can be realised us-
ing their usual parametric polymorphic implementation. In
our definition of Apa, these are the operations (-,), fst(q g,
snd(q,g), left(a,g), right, 5, and case(, p,). Nevertheless,
we need these functions in both a scalar and a lifted vari-
ant. This is trivial for the former three: Their lifted variants
are identical to the scalar ones, but require some thought for
the latter three operations.

Ieftzm 8)
IeftIOt,B> xs

it la = a+
= (rep oo (len zs, false), (zs, L))

rightIOhB> = B8 — a+ 8

rightzmﬁ> zs = (rep(gooy (len s, true), (L, zs))

casel . w @ =) X (B—7) % (a+B) =]
case{aﬁm fgas=
let
selector = fst as
rlen = len (packP (selector, selector))
llen = len selector — rlen
left' = if llen # 0 then f (fst (snd zs)) else L
right' = if rlen # 0 then g (snd (snd zs)) else L
in

(selector, (left', right'))

We do not define conditional expressions formally, but they
behave entirely as expected.

The operations left” and right” encode a complete array
of values as left or right components of a sum—they do
so in a single parallel step. The lifted variant of case is
more involved. It applies its arguments f and g to the left
and right components of the lifted sum, respectively—but
it is careful not to touch a component that represents an
empty array. This is important as these components will not
contain any meaningful value—see the definition of rep—and
they may be part of a recursive data structure.

6.3 Specialisation of Generic Definitions

In the following, we briefly summarise the specialisation
procedure of Hinze [12], as it is needed to instantiate the
generic definitions of the primitives from Section 6.1, and
thus, to obtain concrete definitions for the primitives at the
required types. The general form for type-indexed values in
)\pA is

pOly(a::*> w Fa

polyy) = poly

Poly(nty = pOlyint

Poly(Booly = POlYBool

polyiaxpy = polyx polyy polys)
polyatpy = polyt polyiay polys)
polyany = poly.; poly(a)

Here, x denotes the kind of normal types, i.e., the set of types
produced by T. Type constructors map types to types—e.g.,
the kind of [| - || is *x — . We can bring the definition of any
*-indexed function into the above form by supplying suit-
able values for F', poly(y, polyint, polysooi, polyx, poly+, and
polyy.;;, where we require that the following type constraints
are satisfied:

polyy :: F ()

polyie = FlInt

polysool :: F Bool

polyx = Va,B.Fa— FB — F(axp)
polyy = Va,B.Fa— FB— F(a+p)
polyy. = Yo.F a— F o

The key idea behind Hinze’s transformation is to promote
*-indexed functions to types of arbitrary kinds as follows:
type abstraction is interpreted by value abstraction, type
application by value application, and type recursion by value
recursion. This allows us to define the promoted version of
poly.y, which is denoted by poly.y , as follows:

pOIy«T::n)) o F((t::n))
polyqey — p = poly.
polyay p=pz

poly(ry -2y p = (Poly(ry p) (POWY(ra) P)

polyaa.ry p = Av.polycry (pU{a— v})

POlY ety P = Hov.polygey (pU {a — v})
The variable p denotes an environment, — « extends the
environment, and application of an environment to a type
variable returns the associated type value. Moreover, poly,.,
and poly,.y are related by

pOly<‘r::*) = pOly«‘r::*)) €

where € is the empty environment. As a result, we can
specialise poly.;, by specialising poly.y . Finally, Fy...y is
given by

Fu
v x'F«w“'il» - F((u ziik2))

Fiusy

{ukg — ko))

A similar specialisation procedure for type-indexed types,
which we will not detail here, is given by Hinze in [11].

7. ADDITIONAL FEATURES

7.1 Mutual Type Recursion and Parametrised
Types
The calculus Apa did not include the treatment of mutual
type recursion and parametrised types to reduce notational
overhead. To handle mutual type recursion, we have to use
type equations, such as,

Lista = () + (o x List)

instead of an explicit fixed-point combinator. The types of a
program module are, then, given as a set of such equations,
which may be mutually recursive. We can define the flat-
tened representation of parallel types, as given in Figure 3,
in exactly the same way for type equations.

The inclusion of polymorphism is less straight forward.
The use of polymorphic functions prevents full specialisa-
tion of these functions (without knowing all type instances at
which they occur), which is what has hindered previous for-
mulations of flattening from including support for separate
compilation in the presence of polymorphism. Fortunately,
our novel use of Hinze’s generic programming framework
helps us here again. Hinze uses one higher-order argument
in each specialised function for each type variable occurring
in the type index of a generic value. These arguments con-
tain functions that implement the specialised routine for the
abstracted types, i.e., in the case of applying replication to
a value of type [a], the specialised replication routine for

103

[@] would get a replication routine for a as an argument.
Type-indexed types are treated similarly. See [12, 11] for
details.

The argument so far only covers the specialisation of prim-
itives, but not the vectorisation transformation V[-]. In-
terestingly, vectorisation is not affected by the presence of
recursive types at all—as we already argued in [16]. Simi-
larly, polymorphic definitions do not complicate V[-]. The
essential reason for this is that vectorisation is not a type-
dependent transformation.

7.2 Why Pure Functions Matter

Hughes [13] cites higher order functions and lazy evalua-
tion as the main advantages of functional programming. In
the context of nested data parallelism, other factors come
into play. One of them is, of course, the lack of side ef-
fects when executing multiple function invocations in paral-
lel. In contrast to languages with side effects, NEPAL does
not require artificial restrictions on the kind of computa-
tions that can be executed in parallel without altering the
semantics of the program. In combination with the high
abstraction level of functional programs, the compiler has a
high degree of freedom in mapping source-level data struc-
tures and computations to concrete implementations. The
high degree of expressiveness, usually allows to work with-
out reference types, which are highly problematic in a par-
allel context: (1) They cannot be simply implemented by
pointers on distributed-memory machines; (2) the presence
of pointers generally exacerbates the difficulties of data de-
pendency analysis; and (3) side effects usually reduce the
set of admissible schedules, which reduces parallelism.

Although, it is possible to integrate the discussed ap-
proach to nested data parallelism into non-functional lang-
uages—as we did for C [8]—it is rather tedious, as non-trivial
restrictions on the use of references have to be imposed
within parallel computations. Moreover, the code gener-
ated by the flattening transformation is too fine grained to
be directly executed efficiently on most architectures. This
requires aggressive compiler optimisations, which are signif-
icantly easier to perform in a purely functional language, as
the compiler can exploit its detailed knowledge about data
dependencies.

Nepal allows user-defined dynamic data types within par-
allel arrays. This is possible due to the declarative way in
which algebraic data types are specified in functional lan-
guages. The compiler is able to compute an efficient rep-
resentation of those structures by mapping them onto iso-
morphic structures that contain only parallel arrays of basic
type—which, as we have argued—is important for parallel
performance. Such a transformation is only possible when
we have sufficient control over how data structures are ac-
cessed and manipulated. In V, the nested parallel C dialect,
we restricted the use of references in a parallel context to
parameter passing to give the compiler more scope for op-
timisations. In the process of handling the remaining ref-
erences, our prototype compiler for V transformed arrays
of references into a single reference to one array. However,
as [22] discusses, even with this strong restriction, it is pos-
sible to write programs where the flattened program does
not accurately preserve the semantics of the source program
without imposing further restrictions.

In summary, it appears to us that references types and
fine-grained parallelism—especially when flattening is used—

20 Tee absolute (20,000) 7
— optimal 7
15 oo relative (9,000) -~ -7
o s relative 20,/000);/3’?:«0’3
1 Pl
10 // I
e
.
5+ A7
0 ke : : =
0 5 10 15 20[]

Figure 4: Absolute and relative speedup of Barnes-
Hut

are conceptually incompatible. Consequently, we regard the
lack of support for reference types in flattening-based imple-
mentations as a secondary issue.

8. CONCLUSION

Before the concluding remarks, let us briefly discuss our
preliminary experimental results and related work.

8.1 Benchmarks

To ensure the practicability of our approach, we performed
a number of experiments on various parallel machines in-
cluding a Cray T3E. In particular, we measured the per-
formance of a Barnes-Hut n-body code, which we manu-
ally derived using our transformation rules (we are currently
working at a full compiler). We previously reported these
experimental results in [16] for a more restricted form of
the flattening transformation. Nevertheless, the new trans-
formation produces essentially the same code for this par-
ticular code. Figure 4 displays the relative and absolute
speedup, where the latter is in comparison to a sequential
implementation of the same algorithm on a single processor.
In other nested data parallel implementations [3], the spa-
tial decomposition of the particles was, due to the restricted
set of available data structures, encoded as nested parallel
arrays. The disadvantage of such a representation is that
it does not reflect the structure of the parallel algorithm,
and thus, achieves poor locality. In fact, the inadequate
representation implies up to about 20% runtime overhead
already on a single processor—this factor increases with the
number of processors, as the frequency of non-local memory
access goes up. We are able to avoid this overhead in our
implementation by storing the particles in a rose tree.

Using the type transformation techniques described in this
paper in combination with various other optimising program
transformations, we achieved an absolute speedup of about
a factor 4 on 20 processors, compared with a sequential im-
plementation of the same algorithm in C. Considering the
highly irregular structure of the algorithm and the compar-
atively high communication overhead which it induces, this
is a promising result. Furthermore, the curve is still almost
linear for 20 processors (which was the maximal number of
processors available to us).

Moreover, we achieve a relative speedup of 15 for 20 pro-
cessors in the case of 20k particles, which demonstrates the
good parallel behaviour of our transformations. We hope
that we can further close the gap between relative and ab-
solute speedup by applying more aggressive optimisations.

104

8.2 Related Work

Special purpose functional languages supporting flattening-
based nested data parallelism include Nesl [4] and Proteus [23].
Although, Nesl takes some of its syntax from ML, it is far
from covering the whole language and, in particular, ML’s
rich data structures. Proteus is a hybrid high-level language
mixing functional and imperative language features; flatten-
ing was only applied to a sublanguage.

As we have already mentioned, flattening in its origi-
nal, restricted form was introduced by Blelloch & Sabot [5].
Prins & Palmer [23] as well as Keller & Simons [18] for-
malised the previously rather informal description of the
transformation. The former also extended it to cover higher-
order functions. Palmer et al. [21] optimised the transfor-
mation and Riely et al. [24] showed that it preserves parallel
complexity. Finally, we previously [16] extended it to user-
defined recursive data structures.

8.3 Concluding Remarks

We presented a generalisation of flattening that allows us
to apply this program transformation in the context of a
standard functional languages like Haskell and ML. We feel
that this is an important step towards the practical usabil-
ity of nested data parallelism. Our transformation-based
approach has had first positive practical results and we are
currently in the process of implementing a full compiler.

In this paper, we chose parallel arrays as the only paral-
lel data structure. However, a closer look at the program
transformations reveals that other forms of collections of
values are also suitable as long as we can separate structure
from data values level by level—in the same way as we do
that with segment descriptors for parallel arrays. In partic-
ular, we should be able to support parallel trees and parallel
products.

Acknowledgements. We are indebted to the other two cur-
rent members of the NEPAL project, Roman Lechtchinsky
and Wolf Pfannenstiel, who helped to shape our ideas and
provided valuable feedback. Furthermore, we thank Kai En-
gelhardt, Sven Panne, and the anonymous referees for their
helpful comments and suggestions on a draft of this paper.

9. REFERENCES

[1] J. Barnes and P. Hut. A hierarchical O(nlogn) force
calculation algorithm. Nature, 324, December 1986.

[2] G. Blelloch and J. Greiner. A provable time and space

efficient implementation of NESL. In ACM SIGPLAN

International Conference on Functional Programming,

pages 213-225, 1996.

G. Blelloch and G. Narlikar. A practical comparison of

N-body algorithms. In Dimacs Implementation

Challenge Workshop, 1994.

G. E. Blelloch. Programming parallel algorithms.

Communications of the ACM, 39(3):85-97, 1996.

G. E. Blelloch and G. W. Sabot. Compiling

collection-oriented languages onto massively parallel

computers. Journal of Parallel and Distributed

Computing, 8:119-134, 1990.

D. Cann. Retire fortran? A debate rekindled.

Communications of the ACM, 35(8):81, Aug. 1992.

M. M. T. Chakravarty and G. Keller. How portable is

nested data parallelism? In Proc. of 6th Annual

Australasian Conf. on Parallel And Real-Time
Systems, pages 284-299. Springer-Verlag, 1999.

M. M. T. Chakravarty, F.-W. Schroer, and M. Simons.
V—mnested parallelism in C. In Proceedings of the
Working Conference on Massively Parallel
Programming Models (MPPM-95). IEEE Computer
Society Press, 1995.

S. Chatterjee, J. F. Prins, and M. Simons. Expressing
irregular computations in modern Fortran dialects. In
Fourth Workshop on Languages, Compilers, and
Run-Time Systems for Scalable Computers, Lecture
Notes in Computer Science. Springer Verlag, 1998.

H. P. F. Forum. High Performance Fortran language
specification. Technical report, Rice University, 1993.
Version 1.0.

R. Hinze. Generalizing generalized tries. Journal of
Functional Programming, 2000. To appear.

R. Hinze. A new approach to generic functional
programming. In Proceedings of the 27th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Language. ACM Press, 2000.

J. Hughes. Why Functional Programming Matters.
Computer Journal, 32(2):98-107, 1989.

C. B. Jay. Costing parallel programs as a function of
shapes. Science of Computer Programming, 2000.
Forthcoming.

G. Keller. Transformation-based Implementation of
Nested Data Parallelism for Distributed Memory
Machines. PhD thesis, Technische Universitat Berlin,
Fachbereich Informatik, 1999.

G. Keller and M. M. T. Chakravarty. Flattening trees.
In D. Pritchard and J. Reeve, editors, Euro-Par’98,
Parallel Processing, number 1470 in Lecture Notes in
Computer Science, pages 709-719, Berlin, 1998.
Springer-Verlag.

G. Keller and M. M. T. Chakravarty. On the
distributed implementation of aggregate data
structures by program transformation. In J. Rolim

et al., editors, Parallel and Distributed Processing,
Fourth International Workshop on High-Level Parallel
Programming Models and Supportive Environments
(HIPS’99), number 1586 in Lecture Notes in
Computer Science, pages 108-122, Berlin, Germany,
1999. Springer-Verlag.

105

18]

[21]

[22]

[23]

[24]

[25]

G. Keller and M. Simons. A calculational approach to
flattening nested data parallelism in functional
languages. In J. Jaffar, editor, The 1996 Asian
Computing Science Conference, Lecture Notes in
Computer Science. Springer Verlag, 1996.

J. C. Mitchell. Foundations of Programming
Languages. MIT Press, 1996.

G. Narlikar and G. Blelloch. Space-efficient
implementation of nested parallelism. In Proceedings
of the Sizth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 25-36,
1997.

D. Palmer, J. Prins, and S. Westfold. Work-efficient
nested data-parallelism. In Proceedings of the Fifth
Symposium on the Frontiers of Massively Parallel
Processing (Frontiers 95). IEEE, 1995.

W. Pfannenstiel, M. Dahm, M. M. T. Chakravarty,

S. Jahnichen, G. Keller, F.-W. Schroer, and

M. Simons. Aspects of the compilation of nested
parallel imperative languages. In J. Darlington, editor,
Proceedings of the Third International Conference on
Programming Models for Massively Parallel
Computers (MPPM ’97), pages 102-109. IEEE
Computer Society Press, 1998.

J. Prins and D. Palmer. Transforming high-level
data-parallel programs into vector operations. In
Proceedings of the Fourth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
pages 119-128, San Diego, CA., May 19-22, 1993.
ACM.

J. W. Riely, J. Prins, and S. P. Iyer. Vectorization of
nested-parallel programs. In W. K. Giloi,

S. Jahnichen, and B. D. Shriver, editors, Programming
Models for Massively Parallel Computers. IEEE
Computer Society, 1995.

S.-B. Scholz. On defining application-specific
high-level array operations by means of
shape-invariant programming facilities. In Proceedings
of APL’98, pages 40-45. ACM Press, 1998.

