Combining Fusion Optimizations and Piecewise
Execution of Nested Data-Parallel Programs

Wolf Pfannenstiel

T echnisc he Uniersitét Berlin
wolfp@cs.tu-berlin.de

Abstract. Nested data-parallel programs often have large memory re-
quirements due to their high degree of parallelism. Piecewise execution is
an implementation technique used to minimize the space needed. In this
paper, we present a combinination of piecewise execution and loop-fusion
techniques. Both a formal framework and the execution model based on
threads are presented. We give some experimental results, which demon-
strate the good performance in memory consumption and execution time.

1 Introduction

Nested data-parallelism is a generalization of flat data-parallelism that allows ar-
bitrary nesting of both aggregate data types and parallel computations. Nested
data-parallel languages allow the expression of large amounts of data parallelism.
The flattening transformation introduced by Blelloch & Sabot [2] exposes the
maximum possible data parallelism of nested parallel programs. As parallelism
is expressed by computations on vectors, the memory requirements of flattened
programs are proportional to the degree of parallelism. Most implementations,
e.g. NESL [1], use libraries of vector operations which are targeted by the com-
piler. While this approach encapsulates machine-specific details in the library
and facilitates code generation, it has at least tw o dravbacks [4]. First, it fur-
ther increases memory consumption by introducing many temporary vectors.
Second, code-optimizations cannot be applied across library functions. Thus,
high memory consumption is one of the most serious problems of nested data-
parallel languages.

P almer, Prins, Chatterjee & Faith [5] introduced an implementation tech-
nique known as Pie cewise Ezeution. Here, the vector operations work on vector
pieces of constant size only. In this way, low memory bounds for a certain class of
programs are achiev ed, but the managemer of the pieces requires an interpreter.

T o takle both drawbacks of the library approach, Keller & Chakravarty [4]
ha ve proposed to abandon the library and to use a new imermediate compiler
language Lpr instead, whose main feature is the separation of local computa-
tions from global operations (communication and synchronization) using the idea
of Distributed Types. Local computations can be optimized, the most important
optimization being the fusion of consecutive loops.

In this paper, we propose combining piecewise execution and loop-fusion into
a single framework. We extend the compiler language Lpr by Pie cewiseT yp es

J. Rolim et al. (Eds.): IPDPS 2000 Workshops, LNCS 1800, pp. 324-331, 2000.
© Springer-Verlag Berlin Heidelberg 2000

Combining Fusion Optimizations and Piecewise Execution 325

All optimizations possible in Lpr can still be applied to our extended language.
Our implementation uses a self-scheduled thread model, which was introduced
in [6].

The rest of the paper is organized as follows. Sect. 2 gives a brief summary of
related work. Sect. 3 describes the combination of fusion and piecewise execution.
The multi-threaded execution model is looked at briefly in Sect. 4 and we present
results of some experiments. Finally, Sect. 5 gives an overview of future work.

2 Related Work

Our work was inspired by two key ideas: Piecewise Ezecution, described in [5],
and Distributed Types, as proposed in [3].

Piecewise Execution. Piecewise execution is based on the observation that
many nested data-parallel programs contain pairs of generators and accumula-
tors. Generators produce vectors that are much larger than their arguments.
Accumulators return results that are smaller than their input. The NESL pro-
grams in Fig. 1 are examples of matching generator/accumulator pairs. The
operation [s:e] enumerates all integers from s to e, plus_scan calculates all
prefix sums of a vector, {x * x : x in b} denotes the elementwise squaring of
of b, and sum adds up all vector elements in parallel. SumSq(1,n) returns the
sum of all squares from 1 to n. The excess parallelism must be sequentialized to

function SumSqScan (s,e) =
let

a

b

C

in
sum(c) ;

function SumSq (s,e) =
let
a

c

in
sum(c) ;

[s:e];
plus_scan (a);
{x ¥ x : x in b}

[s:e];
{x * x : x in a}

Fig. 1: Example programs in NESL

match the size of the parallel machine. However, if the generator executes in one
go, it produces a vector whose size is proportional to the degree of parallelism.
Then, memory consumption may be so high that the program cannot execute.
In piecewise execution, the computation exposes a consumer/producer pat-
tern. Each operation receives only a piece, of constant size, of its arguments at a
time. The operation consumes the piece to produce (a part of) its result. After
the current piece is completely consumed, the next piece is requested from the
producer. Once a full piece of output has been produced, it is passed to the
consumer as input. Large vectors never exist in their full length, so piecewise
execution enables larger inputs to be handled. However, some means of control
are needed to keep track of the computation. In [5], an interpreter is employed to
manage control flow. Piecewise execution is a tradeoff between space and time.

326 W. Pfannenstiel

The memory consumption can be reduced dramatically, while the computation
times are likely to increase owing to the overhead associated with serializing
flattened programs. Indeed, interpretation involves a significant overhead.

Limits of Piecewise Execution. Some operations are not well suited for
piecewise execution, e.g. permute. Potentially the complete data vector must be
known to produce the first part of the result, because the first index may refer
to the last element of the input. Whenever one of these operations occurs in a
program, piecewise execution is not possible without buffering more than one
piece at a time. A more detailed discussion of limitations can be found in [5].

Distributed Types. In the library-approach, the compilation of nested data-
parallel programs is finished after the flattening transformation. The parallel
work is delegated to a set of library functions. Optimizations across functions are
not possible owing to the rigid interfaces of the library. Keller & Chakravarty [4]
decompose library functions into two fractions. First, computations with purely
local meaning are extracted, i.e. sequential code that references only local mem-
ory. Second, all other computations, such as interprocessor communication or
synchronization, are declared as global operations. Adjacent local computations
build a block of sequential code to which processor-local code optimizations can
be applied. Blocks of global operations can be optimized as well, e.g. two send
operations may be combined to form just one.

The intermediate language Lpr is introduced featuring Distributed Types, a
class of types used to distinguish local from global values. A local value consists
of one value per processor and is denoted by ((.)). The components have only
local meaning — their layout and size are known only on the local processor. The
function split_scalar : @ — ((@)) transforms a scalar of type « into a local value
whose components all have the specified value (e.g. by broadcasting it). The
function split_agg : [a] = {([a])) takes a global vector and splits it into chunks.
To transform a local vector into a global one, join_agg : {{[a])) — [a] is used.
The higher-order operation ((.)) takes a function f and applies it to all compo-
nents of a local value. To transform a program, the function boundaries of library
operations are removed by decomposing and inlining their code. All local com-
putations are represented by instances of two canonical higher-order functions.

1. Loop: (a1 X aa = B) X (a1 X aa = a2) X (a1 X as — Bool) — [a1] X aa — [B] X a2
2. Gen: (a2 =) X (a2 = a2) X (a2 — Bool) — Int X as — [B] X a2

Loop represents calculations on vectors. It receives a computation function, an
accumulating and a filter function as input. The filter can be used to restrict the
output to elements for which the function returns T'rue. Gen is similar to Loop
except that it loops over an integer rather than a vector, i.e. it can be used to
generate vectors. The split and join operations are used to embed the values
into the distributed types. The interface of the vector operations remains the
same. When two consecutive operations are split up, often the final join of the

Combining Fusion Optimizations and Piecewise Execution 327

first operation and the initial split of the second one can be eliminated, leaving
larger blocks of local computations.

Fusion Optimizations. Deforestation is a well-known technique for fusing
sequential computations on aggregate data structures. As local computation-
blocks in Lpp form sequential code, these techniques can be applied here, too.
A number of transformations to fuse adjacent Loop and Gen constructs are
presented in [3]. The main benefits are fewer vector traversals and fewer (or
maybe no) intermediate vectors. Consider the function SumSq given in Fig. 1. In
the library approach, three functions are used to implement the program, namely
enumerate (corresponding to [s:el), vector mult (elementwise multiplication)
and sum. Transforming the functions into £p7, three blocks of code are formed.
In the first part, parameters are split into local values. The last part is the
global reduction of all partial sums. All computations in between, which realize
the computations inside the three vector operations, form one local block and
can be fused into a single Gen construct. Thus, fusion combines generation
and reduction of the vectors such that no vector is actually created, rendering
piecewise execution superfluous here.

Limits of Fusion. Loop and Gen constructs cannot be fused across global
operations, because the purely local semantics of argument values is destroyed by
the global operation. Consider SumSqScan in Fig. 1. Here, plus_scan is split into
three parts, the middle part being a global operation originating from plus_scan,
which propagates partial sums across processors. Unlike in the previous example,
not all local code blocks can be fused, because the propagation forms a barrier
between the blocks. Whenever a global operation occurs between pairs of Loop
or Gen constructs, fusion is not possible.

3 Combining Fusion and Piecewise Execution

To combine the benefits of piecewise execution and fusion, we extend Lpr by
Piecewise Types. We call the extended language £ pyw . It still contains all features
of Lpr, as we want to support all its optimizations. We use <.> to denote the
type constructor for piecewise types. We provide a higher-order function <.>,
which embeds a computation into a piecewise execution context. If we have
fraix.. . xXap = Bi1X... X0y, then <f> hastype <a1>X ... X<ap,> = <f1>
X ... X <fB>. This means <f > (v1,... ,v,) denotes the piecewise execution
of f, where all the arguments v; must be of a piecewise type. To make a value
ready for piecewise execution, we supply a function pw_in : @« = <a>. As only
certain parts of programs are to be executed in a piecewise manner we provide
pw_out : <a> — a, which transforms a value of piecewise type into a value of
its original type.

Fig. 2 (left) shows an abstract and already fused definition of SumSqScan.
(The definitions of the instance functions f, g, k, f', ¢’ and k' are not given

328 W. Pfannenstiel

since they are not needed for understanding the transformation.) The Gen con-
struct implements the enumerate generator plus the first local part of plus_scan
(formerly a Loop). The function propagate_+ is the global operation that hin-
ders full fusion. The Loop construct realizes the second part of plus_scan, the
elementwise squaring plus the local part of sum. Finally, the local values are
combined to give the global result by join_+, which globally sums up all values.
The value accg is the initial accumulating value needed for Gen. (Its definition
is omitted for simplicity’s sake.)

function SumSqScan’(sg,eg) = function SuquScan;)w(sg7 eg) =
let let
n = split_scalar(sg — eg) n = pw_in(sg — eg)
acc = split_scalar(accg) np = <split_scalar > (n)
(v,b) = (Gen (f, g, k)N (n, acc) acc = pw-in(accg)
c = propagate_+ (b) accp = <split_scalar > (acc)
d = {(m20Loop (f',¢', k)N (v, c) (vp, bp) = <((Gen (f, g, k))) > (np, accp)
in cp = <propagate_+ >(bp)
join_+ (d) dp = <((m2 o Loop (f',g', k")) > (vp, cp)
d = <join_+ >(dp)
in
pw_out(d)

Fig. 2: Fused (left) and piecwise (right) versions of SumSqScan

To execute the function in a piecewise fashion, we lift the operations to piecewise
types, convert the arguments into piecewise values first, and finally transform
the piecewise output into ordinary values again. The transformed program in
Lpw notation is shown in Fig. 2 (right). The input and output have the same
type as in the original version, i.e. the caller is not affected.

The canonical representation of vector computations using Loop and Gen
is well-suited for an automatic analysis of memory-critical program patterns. A
generator is always a Gen with filter function that is not unconditionally false
(Az.Aa.False). (Furthermore, it must not be followed by a projection of only the
accumulating value (71).) An accumulator is a Loop that has a truely restricting
filter function (i.e. not Az.Aa.True). An automatic analysis and transformation
of such program fragments remains to be developed.

4 TImplementation and Benchmarks

The piecewise behavior of program fragments is realized by employing threads,
which simulate the producer/consumer behavior in a couroutine-like fashion.
Viewing the program as a DAG, the sink node calculates the overall result. To
do so, it requests a piece of input from the node(s) on which it depends. The
demand is propagated until a node is reached that still has input to produce
its next piece of output. Initially, only the source nodes hold the program in-
put. Whenever a thread completes a piece of output, it suspends and control
switches to the consumer node. If a thread runs out of input before a full piece
of output has been built, it restarts (one of) its producers. Control moves up

Combining Fusion Optimizations and Piecewise Execution 329

and down in the DAG self-scheduled until the last node has consumed all its
input by producing the last piece of the overall result. A detailed description of
the execution model can be found in [7]. To enable piecewise execution, the un-
derlying thread model needs to provide only a processor-local switching protocol
including control-flow mechanisms and local data-exchange among threads. The
model itself allows only sequential execution as there are no means of communi-
cation or synchronization among different processors. However, the model does
not pose restrictions on the operations executed inside threads, so e.g. the use of
message passing libraries like MPI on distributed memory machines is possible.
(On SMP machines, semaphores or signals may be employed to coordinate and
synchronize threads.)

We can adopt the library approach by realizing each library function as one
thread (on each processor). These threads run synchronously working on the
same data-parallel operation. Of course, the code must be enriched by con-
trol statements to realize the switching behavior for piecewise execution. Com-
munication and synchronization among processors are realized by means of a
message passing library. If consecutive function calls have the same data pro-
duction/consumption rates, they can be encapsulated into one thread. It is also
possible to fuse the original program as far as possible first and then embed the
remaining code into threads, attaching the piecewise control-structures.

We transformed a number of examples manually and implemented them on
a Cray T3E. The programs are written in C in SPMD style using the Stack-
Threads library [8] to realize our thread model. The StackThreads mechanisms
have a purely local semantics. Communication and synchronization among pro-
cessors is realized using the Cray shmem communication library. We implemented
combinations of library and fused code with piecewise execution, exploiting the
generality of our thread model.

One of the examples implemented is the Line-of-Sight algorithm, which de-
termines all objects that are visible from a specified observation point, given the
altitudes of the objects lying in the observer’s viewing direction. The altitude of
the objects might be given by a height function of X and Y coordinates. The al-
gorithm would then take two points in the 2D plane as the observation point and
focus, respectively, and calculate which objects on the connecting line are visible
using a specified resolution between points. Defined in this way, the algorithm
exhibits the typical generator/accumulator pattern. In Fig. 3, running times are
shown for two piecewise program versions par_pw._norm and par_pw_fusion, the
first of which being an adaption of the library version and the latter a fused vari-
ant. The performance depends heavily on the piece size chosen. If the output
is small, we find a pattern that is very similar to results we observed for other
programs (e.g. SumSqScan), too: a piece size (per processor) below 500 is so small
that the overhead for switching dominates computation times resulting in high
execution times. The range between 1K and 3K gives the best running times.
The sweet spot at 1K elements corresponds to the size of the second-level cache
on the Alpha processors. Above 3K, execution times rise significantly because
the vector elements begin stepping on one another in the cache. Beyond 6K,

330 W. Pfannenstiel

Optimal piecesize Optimal piecesize
0.75 T T T T T T 14 T T T

T T
“par_pw_norm.small.7M.data.{" o— "par_pw_norm.big.7M.data.f" <—

"par_pw_fusion.small.7M.data.f ~+— "par_pw_{usion.big.7M.data.f" ~— |

0.7

0.65

o
>

runtime (s)
runtime (s)

o
o
a
T
!

05 -

04 f | | | | | | | | 05 | | | | | | | |
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 0 10000 20000 30000 40000 50000 60000 70000 80000 90000
piecesize (doubles per processor) piecesize (doubles per processor)

Fig. 3: Optimal piece size for Line-of-Sight with small and large output

the performance improves again slowly owing to the decreased thread overhead.
However, the time never again drops below the minimum time attained for small
piece sizes. If the output is large, pw_out (necessary for assembling the piecewise
generated result) has a big communication overhead, which is worse if the piece
size is small. This overhead offsets the improved cache usage and dominates the
running times of the piecewise program versions. Here, the bigger the piece size,
the better the performance. We measured the absolute speedups of four differ-
ent versions. The piece sizes for the piecewise programs were set to the best
values determined in the previously. The results are shown in Fig. 4. The com-

Absolute Speedups Absolute Speedups
T T T

18 ; 14 ;
"par_pw_norm.small 7M.data.f' — \ .
| "par_pw_fusion.small7Mdataf" +— JParpu.norm.big. 7ML datal, o~
1 "par_library small.7M data.i* E— par_pw_fusion big.7M.data
“par_lirary.small 7M.data I 2 Tpar Jibrary big 7M. data.f" £~ R
par_fusion.small.7M data." %— T oot 2
14t
10+
12k
g 10 g 8- -
3 3
g H
4 g
& s % oL]
6l
4+ 4
sl
2|]
2k
o o
0 5 10 15 20 25 0 5 10 15 20 25
processors processors

Fig. 4: Absolute speedups of Line-of-Sight with small and large output

bination of fusion and piecewise techniques yields the fastest results if there are
few visible points. The fused version (par_fusion) is slightly slower. The plain
library-approach (par_library) achieves the worst runtime. Using piecewise ex-
ecution with one thread per library function slightly increases the speedups. The
optimized use of the cache working on small pieces of the memory would appear
to compensate the multithreading overhead. The improvements of fusion and
piecewise execution seem to mix well. Both reduce memory requirements in an

Combining Fusion Optimizations and Piecewise Execution 331

orthogonal way. For large output sizes, owing to the communication overhead
of pw_out, par_fusion performs better than par_pw fusion, and par_pw_norm
is not faster than par_library anymore. However, the essential benefit from
piecewise execution can be seen in both cases. The piecewise versions can run on
any number of processors. For small output, both par_library and par_fusion
need at least four processors to handle 7 million objects. For many output values,
par_library needs six processors and par_fusion five to execute.

The performance results for SumSqScan are similar to those for Line-Of-Sight
with small output. Piecewise execution combined with fusion gives the best
results [6]. Experimental results of further examples and more detailed analysis
can be found in [7].

5 Conclusion and Future Work

We have combined piecewise execution with fusion optimization expressed in a
special intermediate language. We use an improved implementation technique for
piecewise execution based on cost-effective multithreading. Piecewise execution
does not necessarily mean increasing runtime. On the contrary, the combination
of fusion and piecewise execution resulted in the best performance for typical
examples. Piecewise execution allows us to execute a large class of nested data-
parallel programs that could not normally run owing to insufficient memory.

We intend to develop transformation rules that automatically find and trans-
form program fragments suitable for piecewise execution to implement them in
a compiler.

References

1. G. E. Blelloch. NESL: A nested data-parallel language. Technical report, School of
Computer Science, Carnegie Mellon University, 1995.

2. G. E. Blelloch and G. Sabot. Compiling collection-oriented languages onto massively
parallel computers. Journal of Parallel and Distributed Computing, 8(2):119-134,
1990.

3. G. Keller. Transformation-based Implementation of Nested Data Parallelism for
Distributed Memory Machines. PhD thesis, Technische Universitat Berlin, 1999.

4. G. Keller and M. M. T. Chakravarty. On the distributed implementation of aggre-
gate data structures by program transformation. In HIPS ’99. IEEE CS, 1999.

5. D. Palmer, J. Prins, S. Chatterjee, and R. Faith. Piecewise execution of nested
data-parallel programs. In LCPC ’95. Springer, 1996.

6. W. Pfannenstiel. Piecewise execution of nested parallel programs — a thread-based
approach. In P. Amestoy, P. Berger, M. Daydé, I. Duff, V. Frayssé, L. Giraud, and
D. Ruiz, editors, EuroPar’99, LNCS 1685, pages 445—449. Springer, 1999.

7. W. Pfannenstiel. Thread-based piecewise execution of nested data-parallel pro-
grams: Implementation and case studies. Technical Report 99-12, TU Berlin, 1999.

8. K. Taura and A. Yonezawa. Fine-grain multithreading with minimal compiler sup-
port - a cost effective approach to implementing efficient multithreading languages.
In PLDI ’97. ACM, 1997.

	Combining Fusion Optimizations and PiecewiseExecution of Nested Data-Parallel Programs
	1 Introduction
	2 Related Work
	3 Combining Fusion and Piecewise Execution
	4 Implementation and Benchmarks
	5 Conclusion and Future Work
	References

