
On the Distributed Implementation of Aggregate Data
Structures by Program Transformation

Gabriele Keller and Manuel M. T. Chakravarty

Fachbereich Informatik, Technische Universität Berlin, Germany
keller@cs.tu-berlin.de

www.cs.tu-berlin.de/~keller/
Inst. of Inform. Sciences and Electronics, University of Tsukuba, Japan

chak@is.tsukuba.ac.jp
www.score.is.tsukuba.ac.jp/~chak/

Abstract. A critical component of many data-parallel programming languages
are operations that manipulate aggregate data structures as a whole—this includes
Fortran 90, Nesl, and languages based on BMF. These operations are commonly
implemented by a library whose routines operate on a distributed representation
of the aggregate structure; the compiler merely generates the control code invok-
ing the library routines and all machine-dependent code is encapsulated in the
library. While this approach is convenient, we argue that by breaking the abstrac-
tion enforced by the library and by presenting some of internals in the form of
a new intermediate language to the compiler back-end, we can optimize on all
levels of the memory hierarchy and achieve more flexible data distribution. The
new intermediate language allows us to present these optimisations elegantly as
program transformations. We report on first results obtained by our approach in
the implementation of nested data parallelism on distributed-memory machines.

1 Introduction

A collection-oriented programming style is characterized by the use of operations on
aggregate data structures (such as, arrays, vectors, lists, or sets) that manipulate the
structure as a whole [21]. In parallel collection-oriented languages, a basic set of such
operations is provided, where each operation has a straight-forward parallel semantics,
and more complex parallel computations are realized by composition of the basic op-
erations. Typically, the basic operations include elementwise arithmetic and logic oper-
ations, reductions, prescans, re-ordering operations, and so forth. We find collection-
oriented operations in languages, such as, Fortran 90/95 [18], Nesl [1], and Gold-
FISh [15] as well as parallel languages based on the Bird-Meertens Formalism (BMF)
and the principle of algorithmic skeletons [9, 6]. Usually, higher-order operations on
the aggregate structure are provided, e.g., apply-to-each in Nesl; FORALL in Fortran
90/951; and map, filter, and so on in BMF. Collection-oriented parallelism supports
clear code, the use of program transformation for both program development and com-
pilation, and simplifies the definition of cost models [23, 1].
1 Fortran’s FORALL loops are index-based, which complicates the implementation in compari-
son to, e.g., Nesl’s apply-to-each, but still, many of the basic principles are the same [8].

The aggregate data structures of collection-oriented languages are often implemented
by a library whose routines are in functionality close to the basic operations of the
source language. Consequently, the library is both high-level and complex, but carefully
optimized for the targeted parallel hardware; furthermore, it encapsulates most machine
dependencies of the implementation. We call this the library approach—for Nesl’s im-
plementation, see [4]; Fortran 90/95’s collection-oriented operations are usually directly
realized by a library, and even, FORALL loops can benefit from a collection-oriented
implementation [8]. The library approach, while simplifying the compiler, blocks op-
timizations by the rigid interface imposed by the library—most importantly, it inhibits
the use of standard optimizations for processor-local code and hinders the efficient use
of the memory hierarchy, i.e., optimizations for the processor cache and for minimizing
communication operations.

We propose to continue compilation, where the library approach stops and delegates
an efficient implementation to the library. As a result, we can optimize on all levels of
the memory hierarchy (registers, caches, local memory, and distributedmemory)—after
breaking the abstraction enforced by the library, optimizations across multiple oper-
ations become possible and data distribution gets more flexible. Our main technical
contribution is an intermediate language that distinguishes local and distributed data
structures and separates local from global operations. We present the internals of the li-
brary routines to the back-end of the compiler in the form of this intermediate language,
which allows us to implement optimizations by program transformation—thus, the op-
timizations are easy to comprehend, the compiler can be well structured, optimizations
are easily re-ordered and can be proved correct individually. Althoughwe provide some
technical detail, we do not have enough room for discussing all important points; the
proposed technique has been applied to the implementation of nested data parallelism
in the first author’s PhD thesis [17], where the missing detail can be found.

Our main contributions are the following three:
– We introduce the notion of distributed types, to statically distinguish between local
and distributed data structures.

– We outline an intermediate language based on distributed types that allows to stat-
ically separate purely local computations, where program fusion can be applied
to improve register and cache utilization, from global operations, where program
transformations can be used to minimize communication.

– We present experimental evidence for the efficiency of our method.
The paper is structured as follows: Section 2 details the benefits of an intermediate

language that explicitly distinguishes between local and global data structures and com-
putations. Section 3 introduces the concept of distributed types and outlines a declara-
tive intermediate language based on these types. Section 4 briefly outlines the use of the
intermediate language. Section 5 presents results obtained by applying our method to
the implementation of nested data parallelism. Finally, Section 6 discusses related work
and summaries.

2 Global versus Local Computations

Before outlining our proposal, let us discuss the disadvantages of the library approach.

Source Language

Front End

Kernel Language

Simplifier

Library Language

Code Generation

Control Code
&

Library Calls

Unfolding of Primitives
Optimizations

Language of Distributed Types

Message Passing Code

Code Generation

Fig. 1. Compiler structure (the grey area marks our new components)

2.1 The Problems of High-level Libraries

The structure of a compiler based on the library approach is displayed in Figure 1 when
the grey area is omitted. The source language is analyzed and desugared, yielding a
kernel language, which forms the input to the back-end (optimizations on the kernel
language are left out in the figure). The back-end simplifies the kernel language and
generates the control code that implements the source program with calls to the library
implementing the parallel aggregate structure.

As an example, consider the implementation of Nesl [1]. In the case of Nesl, the sim-
plifier implements the flattening transformation [5, 20, 16], which transforms all nested
into flat data parallelism. In CMU’s implementation of the language [4], the library lan-
guage is called VCODE [2]—it implements a variety of operations on simple and seg-
mented vectors, which are always uniformly distributed over the available processing
elements. In fact, CMU’s implementation does not generate an executable, but instead
emits VCODE and interprets it at runtime by an interpreter linked to their C Vector Li-
brary (CVL) [3]. Unfortunately, this approach, while working fine for vector computers,
is not satisfying for shared-memory [7] and distributed-memory machines [14].

The problems with this approach are mainly for three reasons: (1) Processor caches
are badly utilized, (2) communication operations cannot be merged, and (3) data distri-
bution is too rigid. In short, the program cannot be optimized for the memory hierarchy.

2.2 Zooming Into the Library

The library routines provide a macroscopic view of the program, where many details
of the parallel implementation of these routines are hidden from the compiler. We pro-
pose to break the macroscopic view in favour of a microscopic view, where each of the
library routines is unfolded into some local computations and global communication
operations. The grey area of Figure 1 outlines an improved compiler structure including
this unfolding and an optimization phase, where the microscopic view allows new op-
timizations realized as program transformations that minimize access to data elements
that are located in expensive regions of the memory hierarchy. In the following, we
outline the most important optimizations. Please note that the optimizations themselves
are not new—our contribution is to enable the automatic use of these optimizations for
the parallel implementation of aggregate structures in collection-oriented languages.

Optimizing local computations. The microscopic view allows to jointly optimize ad-
jacent local computations that were part of different library routines; in the extreme,
purely local routines, such as, elementwise operations on aggregate structures, can be
fully merged. Such optimizations are crucial to exploit machine registers and caches.

For example, the following Nesl [1] function summing all squares from 1 to n
proceeds in three steps: First, a list of numbers from 1 to n is generated; second, the
square for each number is computed; and third, all squares are summed up.

sumSq1 (n) : Int -> Int =
let nums = [1:n+1]; — numbers from 1 to n

sqs = {i*i : i in nums} — square each i from nums
in
sum (sqs); — perform a reduction on sqs

Each of the three steps corresponds to one VCODE operation, i.e., one library rou-
tine, in CMU’s Nesl implementation. Even on a single processor machine, this program
performs poorly when the value of n is sufficiently large, i.e., when the intermediate re-
sults do not fit into the cache anymore. Much more efficient is the following explicitly
recursive version that can keep all intermediate results in registers.

sumSq2 (n) : Int -> Int = sumSq2’ (1, n);

sumSq2’ (x, n) : (Int, Int) -> Int =
if (x > n) then 0
else x*x + sumSq2’ (x + 1, n);

In sequential programming, fusion (or deforestation) techniques are applied to derive
sumSq2 automatically from sumSq1 [25, 11, 24, 19]. Unfortunately, these techniques
are not directly applicable to parallel programming, because they replace the aggregate-
based computations fully by sequential recursive traversals—sumSq2 completely lost
the parallel interpretation of sumSq1. However, as soon as we have clearly separated
local from global computations, we can apply fusion and restrict it to the local compu-
tations, so that the global, parallel structure of the program is left intact.

Optimizing global communication. The separation of local and global operations,
which becomes possible in the microscopic view, allows to reduce communication over-
head in two important ways: (1) We can merge communication operations and (2) we
can trade locality of reference for a reduction of communication needed for load balanc-
ing. A simple example for the first point is the Nesl expression for concatenating three
vectors: (xs ++ ys) ++ zs. It specifies pure communication, which re-distributes
xs, ys, and zs such that the result vector is adequately distributed. Hence, the inter-
mediate result xs ++ ys should ideally not be computed at all, but xs and ys should
immediately be distributed correctly for the final result. Unfortunately, the rigid inter-
face of a high-level library hinders such an optimization.

Regarding the second point, i.e., trading locality of reference for reduced load bal-
ancing costs, it is well known that optimal load balance does not necessarily lead to
minimal runtime. Often, optimal load balance requires so much communication that an
imbalanced computation is faster. Again, the compiler would often be able to optimize
this tradeoff, but it is hindered in generating optimal code in the library approach, as
the library encapsulates machine specific factors and library routines require fixed data
distributions for their arguments.

3 Distributed Types Identify Local Values

A macroscopic parallel primitive, i.e., an operation on an aggregate structure in the li-
brary approach, is in the microscopic view implemented as a combination of purely
local and global subcomputations. The latter induce communication to either combine
the local sub-results into a global result or to propagate intermediate results to other pro-
cessors, which need this information to execute the next local operation. For example,
consider the summation of all values of an aggregate structure on a distributed-memory
machine. In a first step, each processor adds up all the values in its local memory; in the
second step, the processors communicate to sum all local results, yielding the global re-
sult, which is usually distributed to all processors. To model local and global operations
in the microscopic view, we need to distinguish between local and global values. We
define a global value as a value whose layout is known by all processors; thus, each pro-
cessor is able to access the components of a global value without explicitly co-operating
with other processors.2 In contrast, a local value is represented by an instance on every
processor, where the various instances are completely independent and accessible only
by the processor on which they reside. We use a type system including distributed types
to statically model this difference.

3.1 Distributed Types

In the source language, we distinguish between scalar values of basic type and com-
pound values of aggregate type, where the latter serve to express parallelism. Both kinds
2 We assume a global address space, where a processor can get non-local data from another
processor as long as it knows the exact layout of the whole structure across all processors.
Such a global address space is supported in hardware by machines, such as the Cray T3E, and
is generally available in MPI-2 by one-sided communication [13].

of values are global in the sense defined before; each processor either has a private copy
of the value (this is usually the case for scalar values) or it is aware of the global layout
and can, thus, access any component of the value if necessary. Such values are often
not suitable for expressing the results computed by local operations, as for example,
the local sums computed in the first step of the previous summation example. The re-
sult of the local summation is actually an ordered collection of scalar values, with as
many elements as processors. The ordering, which is essential for some computations,
corresponds to the ordering of the processors. We introduce distributed types, denoted
by double angle brackets to represent such local values; to be precise, such a value
is an ordered collection of fixed, but unknown arity. The arity reflects the number of
processors, which is unknown at compile-time, but fixed throughout one program exe-
cution. For any type , represents such a collection of processor-local values of
type .

The usefulness of distributed types for local results of basic type can easily be seen
in the sum example. However, it is probably not as obvious for values of aggregate
type, as those values are usually not replicated across processors, but distributed over
the processors. Still, the distinction between global and local values is also important for
aggregate data types. For example, consider a filter operation that removes all elements
that do not satisfy a given predicate from a collection. After each processor computed
the filter operation on its local share of the aggregate structure, the overall size of the
result is not yet known; thus, the intermediate result of the local operation is not a global
aggregate structure according to our definition, but a collection of local structures.

3.2 Distributed Computations

Together with the type constructor , we introduce a higher-order operation . For
a function , we denote by the operation that applies in parallel to each local
component of a value of distributed type. Thus, for

(1)

the operation has type

(2)

In other words, , with the of distributed type , applies on
each processor to the -tuple formed from the components of to that are local to
and yields an -tuple of local results on . The th components of the result tuples

of all processors form, then, a local value of distributed type . This formalism
distinguishes local computations (inside) from global computations and allows to
calculate with them, while still maintaining a high level of abstraction.

3.3 A Language of Distributed Types

Before continuing with the implementation of aggregate structures using distributed
types, let us become more concrete by fixing a syntax for an intermediate language that

(function definition)
(distributed type)
(aggregate type)
(tuple type)
(function type)
(scalar types)
(local definition)
(conditional)
(application)
(replication)
(aggregate constructor)
(tuple)
(variable)

Fig. 2. Syntax of DT

supports distributed types. The language DT, whose syntax is displayed in Figure 2,
allows a functional representation of the compiled program. A functional representa-
tion is well suited for optimization by program transformation and does not restrict the
applicability of our approach, as parallel computations are usually required to be side-
effect free, even in imperative languages (see, for example, the pure functions of Fortran
95 and HPF [10]).

A program is a collection of typed function definitions produced by . Types
include a set of scalar types as well as more complex types formed by the tuple and
function constructors. Furthermore, denotes an aggregate type whose elements are
of type and is a distributed type as discussed previously.

Expressions include the standard constructs for local definitions, conditionals,
and function application as well as tuple and aggregate construction. Moreover, we
have for some expression , where we require that is of functional type and
the function represented by is made into a parallel operation as discussed in the
previous subsection. Furthermore, we use to denote function composition and

to denote the application of a pair of functions to a pair of arguments, i.e.,
. We omit a formal definition of DT’s type system,

as it is standard apart from the addition of distributed types, which essentially means
to cast Equations 1 and 2 into a typing rule. Replication distributes over and , i.e.,

and .

3.4 Operations on Distributed Types

To re-phrase the primitives of the library approach in the microscopic view, we need
operations that convert values of global type into values of distributed type and vice
versa. In general, we call a function of type a split operation and a func-
tion of type a join operation. Intuitively, a split operation decomposes a
global value into its local components for the individual processors. Conversely, a join
operation combines the components of a local value into one global value. Note that es-
pecially split operations do not necessarily perform work; sometimes they merely shift

the perspective from a monolithic view of a data structure to one where the distributed
components of the same structure can be manipulated independently.

The operation takes a value of basic type (i.e., Bool,
Int, or Float) and yields a local value whose components are identical to the global
value. It is an example of a function, which typically does not imply any work, as it is
common to replicate scalar data over all processors, to minimize communication; but,
the shift in perspective is essential, as allows to alter the local copies of the value
independently, whereas implies the consistent change of all local copies.

On values of type integer, we also have . The argument,
say , is assumed to be the size of an aggregate structure; yields a collection
of local integer values, whose sum is equal to . Each component of the collection
is the size of the processor-local chunk of an aggregate structure of size when it is
distributed according to a fixed load balancing strategy.

DT requires a join operation for each reduction on the aggregate structure:

— for integers and floats
— for integers and floats
— and so on

They are used to combine the local results of the parallel application of the reduc-
tion to yield a global result—in the summation example from the beginning of this
section, we would need if we sum integer values. Furthermore, we can use

to compute the number of elements in a structure of type ,
where gives the size of a structure .

Furthermore, for aggregate structures, the operation pro-
vides access to the local components of the distributed structure and, conversely, the
operation combines the local components of a structure into
a global structure. The operation induces no communication or other costs;
it merely provides an explicit view on the distribution of a global structure. In con-
trast, re-arranges the elements, if applied to a structure of distributed type,
whose components are not properly distributed according to the fixed load balancing
strategy. Thus, the combined application , while computationally
being the identity, ensures that the resulting structure is distributed according to the
load-balancing strategy of the concrete implementation. To illustrate the use of split
and join operations for the definition of more complex routines, we formalize the sum-
mation that we already discussed in the beginning of this section:

After obtaining the local view of the aggregate structure with , summation
proceeds in two steps: First, the purely local reduction , which yields a
local integer result on each processing element, i.e., a value of type ; and second,
the global reduction of the local results with .

Apart from join and split operations, which compute global values from distributed
values, and vice versa, we need operations that propagate information over the compo-
nents of a distributed value; they receive a value of distributed type as input parameter
and also return a distributed type. Although the parallel application of local operations

processor 1 processor 2 processor 3 processor
1 3 4 7 5 2 7 3 2

1 4 8 7 12 14 7 10 12

0

0 8 22

1 4 8 15 20 22 29 32 34

Fig. 3. Local and global operations in prescan

has the same type, namely , propagation is fundamentally different,
since, in the case of the parallel application of local operations, there is no communica-
tion between the processing elements. Similar to the join operations, where DT offers
an operation for every form of reduction, there is a propagate operation in DT for each
prescan operation that we need on the aggregate structure. A propagate operation pres-
cans over the components of the distributed type according to the implicit order of the
components. Some examples of this type of operation are the following:

— for integers and floats
— for integers and floats
— and so on

Formally, the semantics of the split, join, and propagate operations can be charac-
terized by a set of axioms [17]

4 Optimizing with Distributed Types

With DT we can realize the three compiler phases marked by the grey area in Figure 1:
unfolding of the library primitives, optimizations, and code generation. We do not have
the space to discuss them in detail, but like to outline some important points of the first
two phases, i.e., unfolding and optimizations, in the next two subsections. Afterwards,
we discuss a small example to illustrate the technique.More details can be found in [17].

4.1 Unfolding Library Routines

The whole point of DT is to allow defining the internal behaviour of the routines that
are primitive in the library approach (the unfolding step in Figure 1).We already defined
the summation function in DT; now, we discuss the related, but more complex
pre-scan operation. We do not detail the local operations, because they depend on the
implemented aggregate type and source language—in [17], the details for the case of
nested parallel languages are given.

Figure 3 sketches the steps of a parallel routine. The dotted lines mark

processor boundaries and indicate that each processor has a local copy of a part of the
aggregate structure. Local computations are marked by grey, global computations by
black arrows. The algorithm proceeds in three steps:

1. Each processor computes a local pre-scan on its share of the aggregate structure.
The local sum of each processor is marked with a grey box.

2. A global pre-scan (the black arrow) over all local sums provides each processor
with the sum of all elements residing on preceding processors.

3. Each processor adds its result of the previous operation to each element of the
intermediate vector computed in the first step.

Overall, the operation consists of two purely local computations (Step 1
and 3) and one global operation (Step 2), entailing communication.

Next, we express this computation in terms of distributed types, split, join, prop-
agate, and local operations. Before applying the first local operation, we have to use

to obtain the local view on the input structure . Then, we apply the local pre-
scan operation, to each component of the local value. As can be seen
in Figure 3, has to return two values on each processor: the new local
structure and the local sum—that is, . Over-
all, Step 1 can be expressed in DT by the composition .

Step 2 essentially is the previously discussed . It
realizes the black arrow of Figure 3, propagating the local results from left to right. In
Step 3, we add, on each processor, the local result of the previous step to each element
of the local fragment of the intermediate aggregate structure that we obtained in Step 1.
Therefore, we define an auxiliary function that gets the results of the previous
two steps as arguments.

The expression replicates the value as often as the size of re-
quires. Elementwise addition computes the local contributions to the overall
result, which in turn is obtained from the local results with .

Overall, we have the following definition for , where local and global
computations are explicit—local computations are enclosed in :

4.2 Optimizations on DT

The unfolding of the library routines in DT enables new kinds of optimizations, which
we can categorize as follows: (1) optimizations of local computations, (2) optimizations
of global operations, and (3) enabling optimizations. We outlined the first two kinds al-
ready informally in Section 2 and refer to [17] for a formal definition of applicable
fusion techniques, optimizations minimizing communication, and example derivations.
In the previous subsection, we avoided fixing a notation for specifying local computa-
tions, as there is a wide design space, which is largely independent from the main points

of this paper. One possibility is to provide a set of primitives functions for manipulat-
ing local fragments of the aggregate structure; another possibility is the use of loop
constructs that define iterators over the local fragments of aggregate structures (this the
approach taken in [17]). In any case, a set of equational transformation rules should be
provided that implements fusion (see Section 2) and possibly also other optimizations.

The third form of optimizations, enabling optimizations, are independent of the no-
tation for local computations; they use essential properties of DT to re-order local and
global computations such that subcomputations are nicely clustered for the first two
forms of optimizations. Space limitations again force us to refer to [17] for the com-
plete set of these optimization rules; however, we want to state one crucial point: As
mentioned, does not change the contents of the value of type

to which it is applied, but it ensures that the aggregate structure is well balanced.
After unfolding the library primitives, all intermediate results are re-balanced in this
way, which does not necessarily minimize the runtime (see Section 2). Thus, the opti-
mizer removes many of these re-distributions, which saves communication and moves
local computations, which were originally separated by re-balancing, next to each other.
Thus, new local optimizations becomes possible, after applying the enabling optimiza-
tion .

4.3 An Example
We use sumSq1 from Section 2.2 for an example transformation. Let us start with the
definition of the function as it appears in the library language, i.e., after the font-end:

where we have . We already provided the definition for
in Section 3.4 and define and as follows:

For the local functions and , we only provide a specification; the
exact definition depends on how we choose to represent the processor-local, sequential
code. However, the function deserves a little more attention; it computes
for each processing element the local range of values and may be defined as

Nevertheless, it makes sense to regard this function as a primitive, as it can, in depen-
dence on the distribution policy for the concrete aggregate structure, usually be imple-
mented without any communication.

When the compiler unfolds the library primitives, it can transform the function com-
positions within the body of as follows:

eliminate (there is no load imbalance anyway)

distribution law for replication (Section 3.3)

Now, the local computation is a slight gen-
eralization of the original function (it has an explicit start value instead of
starting with 1). As it is purely local, we can fuse it into essentially the same code as
sumSq2’ (the auxiliary function in the fused version of Section 2.2), i.e., we get

We achieved our goal of applying fusion to the local code in a controlled manner, which
leaves the parallel semantics of our code intact.

5 Benchmarks

We summarize results collected by applying our method to the implementation of Nesl-
like [1] nested data parallelism [17]. However, we do not directly compare our code
and that of CMU’s implementation of Nesl [4], because the implementation of CMU’s
vector library CVL [3] is already an order of magnitude slower and scales worse than
our vector primitives on the Cray T3E, which we used for the experiments. Our code
is hand-generated using the compilation and transformation rules of [17]—we are cur-
rently implementing a full compiler.

Local optimizations. In Section 2, we mentioned fusion as an important technique for
optimizing local computations. For sufficiently large vectors, the optimization achieves
a speedup linear to the numbers of vector traversals that become obsolete as main mem-
ory access is reduced. Comparing sumSq1 and sumSq2 from Section 2, we find a
speedup of about a factor four for large vectors—see Figure 4 (left part). Fusion is par-
ticularly important for compiling nested parallelism, as the flattening transformation [5,
20, 16] leads to extremely fine-grained code.

Global optimizations. Concerning global optimizations, we measured the savings from
reducing load balancing, i.e., a combination (see previous sec-
tion). In Figure 4 (right part), we applied a filter operation removing all elements from
a vector except those on a single processor, thus, creating an extreme load imbalance.
After filtering, we applied one scalar operation elementwise. The figure shows that, if
this operation (due to fusion) finds its input in a register, re-distribution is up to 16 pro-
cessors significantly slower than operating on the unbalanced vector. In the case of a
more complex operation, the runtime becomes nearly identical for 16 processors. As
the flattening transformation introduces many filter operations it is essential to avoid
re-distribution where possible.

The left figure displays the speedup of sumSq2 over sumSq1 (by loop fusion). The right figure
contains the runtime of filtering plus one successive operation; with and without re-distribution.

Fig. 4. Effects of local and global optimizations

bhTree
accels
accels
bhTree

Fig. 5. Relative and absolute speedup of -body algorithm for 20,000 particle

A complete application. We implemented an -body code, the 2-dimensional Barnes-
Hut algorithm, to get a feeling for the overall quality of our code. The absolute and
relative speedup for 20,000 particles are shown in Figure 5. The runtime is factored
into the two main routines, which build the Barnes-Hut tree (bhTree) and compute the
accelerations of the particles (accels), respectively. The routine bhTree needs a lot of
communication, and thus, scales worse, but as it contributes only to a small fraction of
the overall runtime, the overall algorithm shows a speedup nearly identical to accels.

The absolute speedup is against a purely sequential C implementation of the algo-
rithm. We expect to be able to improve significantly on the absolute speedup, which is
about a factor of 6 for 24 processors, because we did not exploit all possible optimiza-
tions. To see the deficiency of the library approach, consider that in the two-dimensional
Barnes-Hut algorithm, we achieve a speedup of about a factor of 10 by fusion.

6 Related Work and Conclusions

With regard to implementing nested parallelism, Chatterjee et al’s work, which cov-
ers shared-memory machines [7], is probably closest to ours; however, their work is
less general and not easily adapted for distributed memory. In the BMF community,
-bounded lists are used to model block distributions of lists [22]; this technique is
related to distributed types, but the latter are more general as they (a) can be applied
to any type and (b) do not make any assumption about the distribution, especially,

is in general not the identity. Gorlatch’s distributed homomor-
phisms appear to be well suited to systematically derive the function definitions, which
we need for the library unfoldings—like, e.g., the definition [12]. To the
best of our knowledge, we are the first to propose a generic, transformation-based
alternative to the library approach. Our method enables a whole class of optimiza-
tions by exposing the internals of the library routines to the compiler’s optimizer; the
transformation-based approach systematically distinguishes between local and global
operations using a type system and makes it easy to formalize the optimizations. Most
other work on implementing aggregate structures either focuses on the library approach
or describes language-specific optimizations. We applied our method to the implemen-
tation of nested data parallelism and achieved satisfying results in first experiments.

Acknowledgements. We thank the Nepal project members, Martin Simons and Wolf
Pfannenstiel, for providing the context of our work and feedback on a first version
of the paper. We are also grateful to Sergei Gorlatch and the anonymous referees for
their comments on an earlier version. The first author likes to thank Tetsuo Ida for his
hospitality during her stay in Japan. Her work was funded by a PhD scholarship of the
Deutsche Forschungsgemeinschaft (DFG).

References

1. Guy E. Blelloch. Programming parallel algorithms. Communications of the ACM, 39(3):85–
97, 1996.

2. Guy E. Blelloch and Siddhartha Chatterjee. VCODE: A data-parallel intermediate language.
In Proceedings Frontiers of Massively Parallel Computation, pages 471–480, October 1990.

3. Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C. Hardwick, Margaret Reid-Miller, Jay
Sipelstein, and Marco Zagha. CVL: A C vector library. Technical Report CMU-CS-93-114,
Carnegie Mellon University, 1993.

4. Guy E. Blelloch, Siddhartha Chatterjee, Jonathan C. Hardwick, Jay Sipelstein, and Marco
Zagha. Implementation of a portable nested data-parallel language. In 4th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 1993.

5. Guy E. Blelloch and GaryW. Sabot. Compiling collection-oriented languages onto massively
parallel computers. Journal of Parallel and Distributed Computing, 8:119–134, 1990.

6. George Horatiu Botorog and Herbert Kuchen. Using algorithmic skeletons with dynamic
data structures. In IRREGULAR 1996, volume 1117 of Lecture Notes in Computer Science,
pages 263–276. Springer Verlag, 1996.

7. S. Chatterjee. Compiling nested data-parallel programs for shared-memory multiprocessors.
ACM Transactions on Programming Languages and Systems, 15(3):400–462, july 1993.

8. S. Chatterjee, Jan F. Prins, and M. Simons. Expressing irregular computations in modern
Fortran dialects. In Fourth Workshop on Languages, Compilers, and Run-Time Systems for
Scalable Computers, Lecture Notes in Computer Science. Springer Verlag, 1998.

9. J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N. Sharp, Q. Wu, and R. L.
While. Parallel programming using skeleton functions. In A. Bode, M. Reeve, and G. Wolf,
editors, PARLE ’93: Parallel Architectures and Languages Europe, number 694 in Lecture
Notes in Computer Science, pages 146–160, Berlin, Germany, 1993. Springer-Verlag.

10. High Performance Fortran Forum. High Performance Fortran language specification. Tech-
nical report, Rice University, 1993. Version 1.0.

11. Andrew J. Gill, John Launchbury, and Simon L. Peyton Jones. A short cut to deforestation. In
Arvind, editor, Functional Programming and Computer Architecture, pages 223–232. ACM,
1993.

12. S. Gorlatch. Systematic efficient parallelization of scan and other list homomorphisms. In
L. Bouge, P. Fraigniaud, A. Mignotte, and Y. Robert, editors, Euro-Par’96, Parallel Process-
ing, number 1124 in Lecture Notes in Computer Science, pages 401–408. Springer-Verlag,
1996.

13. William Gropp, Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg,
William Saphir, and Marc Snir. MPI: The Complete Reference, volume 2—The MPI-2 Ex-
tensions. The MIT Press, second edition, 1998.

14. Jonathan C. Hardwick. An efficient implementation of nested data parallelism for irregular
divide-and-conquer algorithms. In First International Workshop on High-Level Program-
ming Models and Supportive Environments, 1996.

15. C. Barry Jay. Costing parallel programs as a function of shapes. Invited submission to
Science of Computer Programming, September 1998.

16. G. Keller and M. Simons. A calculational approach to flattening nested data parallelism in
functional languages. In J. Jaffar, editor, The 1996 Asian Computing Science Conference,
Lecture Notes in Computer Science. Springer Verlag, 1996.

17. Gabriele Keller. Transformation-based Implementation of Nested Data Parallelism for Dis-
tributed Memory Machines. PhD thesis, Technische Universität Berlin, Fachbereich Infor-
matik, 1998. To appear.

18. Michael Medcalf and John Reid. Fortran 90 Explained. Oxford Science Publications, 1990.
19. Y. Onue, Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. A calculational fusion system

HYLO. In R. Bird and L. Meertens, editors, Proceedings IFIP TC 2 WG 2.1 Working Conf.
on Algorithmic Languages and Calculi, Le Bischenberg, France, 17–22 Feb 1997, pages
76–106. Chapman & Hall, London, 1997.

20. Jan Prins and Daniel Palmer. Transforming high-level data-parallel programs into vector
operations. In Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, pages 119–128, San Diego, CA., May 19-22, 1993. ACM.

21. Jay M. Sipelstein and Guy E. Blelloch. Collection-oriented languages. Proceedings of the
IEEE, 79(4):504–523, April 1991.

22. D. Skillicorn and W. Cai. A cost calculus for parallel functional programming. Journal of
Parallel and Distributed Computing, 28:65–83, 1995.

23. D.B. Skillicorn. Foundations of Parallel Programming. Cambridge Series in Parallel Com-
putation 6. Cambridge University Press, 1994.

24. Akihiko Takano and Erik Meijer. Shortcut deforestation in calculational form. In Conf.
Record 7th ACM SIGPLAN/SIGARCH Intl. Conf. on Functional Programming Languages
and Computer Architecture, pages 306–316. ACM Press, New York, 1995.

25. Philip Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical Com-
puter Science, 73:231–248, 1990.

