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Abstract. The data-parallel programming model is currently the most success- 
ful model for programming massively parallel computers. Unfortunately, it is, in 
its present form, restricted to exploitingflat data parallelism, which is not suitable 
for some classes of algorithms, e.g. those operating on irregular structures. Re- 
cently, some effort has been made to implement nested data-parallel programs ef- 
ficiently by compiling them into equivalent fiat programs using a transformation 
called flattening. However, previous translations of nested into flat data-parallel 
programs have proved unwieldy when it comes to inventing and specifying opti- 
mizations and verifying the translation. This paper presents a new formalization 
of the flattening transformation in a calculational style. The formalization is eas- 
ily verified and provides a good starting point for the development of new opti- 
mizations. Some optimizations invented on the basis of this new formalism are 
described. Furthermore, we present practical evidence obtained by experiment- 
ing with an implementation of the transformation. 

Keywords: parallel programming; functional programming; nested data parallelism; 
flattening transformation; implementation; calculational method. 

1 Introduction 
Today 's  most  successful approaches to parallel programming are based on the data- 
parallel programming model. There are two main reasons for this: first, such program- 
ming models  are comparatively easy to use from the programmer ' s  point of  view; sec- 
ond, their simplicity has led to a number of  efficient implementations. They are, how- 
ever, in the form they are mostly used - -  as flat data parallelism - -  quite restricted. 
Languages based on this kind of parallelism, like C* [19] and HPF [12], make it diffi- 
cult to fully exploit the parallelism of algorithms that work on irregular data structures. 
On the other hand, this restriction facilitates the generation of  efficient code. 

Nested data parallelism, as employed, e.g. in Nesl [8], Paralation Lisp [18], and 
Proteus [16], overcomes this restriction [6] while still having the potential for efficient 
implementation. Blelloch [4] provided the basis for such implementations by showing, 
for a functional language that was extended to express nested data parallelism, that such 
a language can be transformed mechanically into code using fiat data parallelism only. 
The results, given in [8], show that this code can be executed efficiently on a wide range 
of  parallel machines, f rom vector computers to SIMD and M I M D  machines. 

* TU Berlin, Forschungsgruppe Softwaretechuik (FR5-6), Franklinstr. 28129, D-10587 Berlin. 
e-mail: {keller, simons} @cs.tu-berlin.de 
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ExprList 

Vat I Const 
FunName ([ExprList]) 
{[ExprList]} 
let (Vax : Expr) + in Expr 
if Expr t hen  Expr e l s e  Expr 
{Expr I Generators : Expr} 

I 

- -  variables and constant expressions 
- -  function application 
- -  vector construction 
- -  let binding 
- -  case distinction 
- -  apply-to-each (source language only) 

Expr Generators := Vax +-- Expr 
Expr, ExprList I Var +-- Expr, Generators 

Fig. 1. Syntax of the source and the target languages 

Although the basics of the transformation are clear, applying it to a concrete lan- 
guage easily leads to unwieldy and complicated transformation rules: their implemen- 
tation becomes error-prone, and possible opportunities for optimization are hidden. In 
addition, extending the transformation to handle imperative features adds considerably 
to the difficulties encountered with functional languages [ 1, 9]. These problems call for 
a simple and compact formalism to describe the transformation. This paper introduces 
such a formalism, specifically designed to simplify calculations [2]. Moreover, we pre- 
sent the flattening transformation completely within this formal framework to facilitate 
correctness proofs and to make the calculational derivation of optimizations possible. 

The paper is organized as follows. In Sect. 2, we introduce the formalism and state 
some simple laws. Sect. 3 presents the basic transformation rules controling the flatten- 
ing process. In Sect. 4, we derive several optimizations of the basic set of rules. Sect. 5 
concludes the paper by presenting some performance data obtained from an experimen- 
tal implementation of the flattening transformation, as well as a brief review of related 
and a discussion of future work. 

2 N e s t e d  D a t a  P a r a l l e l i s m  

Efficient implementations of nested data parallelism currently rely on the fact that the 
latter can be transformed mechanically into flat data parallelism. To express this flatten- 
ing transformation formally, we introduce two functional languages: a source language 
allowing the expression of nested data parallelism, and a target language allowing the 
expression of fiat data parallelism only. Both languages share the same syntax (see 
Fig. 1) the only difference being that the construct used to express nested data paral- 
lelism - -  apply-to-each - -  is unavailable in the target language. Flattening is specified 
in Sect. 3 by a set of rewrite rules translating source into equivalent target expressions. 

2 . 1  T h e  S o u r c e  L a n g u a g e  

The source language is a strongly typed, strict, first-order functional language. It has 
one class of type constructors: vector constructors {-} of arbitrary but finite arity. Vec- 
tors, like lists in Haskell or ML, are linearly ordered, homogeneously typed sets of 
arbitrary but finite size, and can also contain vectors of the same type as elements. 
They play a central role, since parallelism can only be expressed by operations on 
vectors. The language offers a set of primitive parallel operations on vectors, some 
of which are described in Tab. 1. General parallel computations are specified by the 
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# :: {ce}  - +  Int 
! :: {c~} x In t  --+ ce 
~+ :: {~} x {~} -~ {~} 
dist :: a x In t  --> { a }  

permute :: {a} x {Int} ~ {a} 

pack :: {a} • {Bool} ~ {c,} 

e_scan :: {~} -* {#} 

e_reduce :: {a} --~ fl 

length of a vector 
xs!n returns the nth element of vector xs. 
concatenation of two vectors 
dist(x,n)  creates a vector of length n with zs as its ele- 
ments; we denote dist(x, # x s )  by x  9 xs 
constructs the permutation of a given vector according to a 
given permutation vector 
constructs a vector by taking from a given vector all ele- 
ments corresponding to a true value in a given flag vector 
for each monoid operator @ with identity 1~ (e.g. 
+ , . ,  rain, max), @_scan({xl,... , xn})  computes the pre- 
fix sum {1r x l , . . .  , Xl e ' ' "  e Xn--1} 
e_reduee({xl , . . .  , xn}) computes the generalized sum of 
the argument vector x l   9  9 .. e xn.  
discards the top-level structure of a nested vector 
given a nested vector xs and a vector ys such that # y s  = 
#.T'(xs), 79~ (ys) denotes the partition of ys induced by the 
top-level structure of xs 

Tab. 1. Some primitive parallel operations 

"apply-to-each" construct whose notation is derived f rom list-comprehension: the ex- 
pression { f x I x +-- xs : p x }  denotes the vector that results f rom evaluating in parallel  
the body f x for all those elements x taken f rom the vector xs for which the Boolean 
expression p x evaluates to true. For instance, the expression {2 * x [ x +-- {1, 2, 5, 8} : 
even(x)}  evaluates to {4,16}.  An apply-to-each can have multiple generators, as in 
{x + y [ x 6-- {1 ,2} ,y  6-  {5,8}},  in which case the bindings are evaluated in a 
lockstep fashion provided that the generating vectors have the same length. Thus, the 
last expression evaluates to {6, 10}. This distinguishes "vector-comprehension" from 
list-comprehension, where bindings are evaluated in a combinatory fashion. 

The only way to express nested parallel computations is to make the body of an 
apply-to-each itself a parallel computation. Let  us illustrate the use of nested data 
parallelism by a small example. Quicksort, a classical divide-and-conquer algorithm, 
contains two sources of  parallelism. 
First, the division of the problem 
into subproblems can be solved in 
parallel, i.e. it can be decided in par- 
allel for each element of  a vector 
whether it is less than, equal to, or 
greater than a fixed pivot element. 
This kind of parallelism within a func- 

qsort(xs) = 
i f  --ff:xs <: 1 t h e n  xs 
else let  m = xs[#xs /2]  

s =  { x l x  ~ xs : x  <m} 
g =  { x l x  +-xs  : x  > m }  

in  ~orted[0] q+ e q+ so~d[1] 
tion is called intrafunctionparallel ism. 
Second, the subproblems themselves can be solved in parallel by recursively applying 
Quicksort  to them. This kind of parallelism between function calls is called interfunc- 
lion parallel ism. In a fiat data parallel language, one would - -  without a substantial 
amount  of  additional coding e f f o r t - -  only be able to exploit one of the sources of  paral- 
lelism in this algorithm, because exploiting both requires parallel computations within 
parallel computations. In our source language, on the other hand, the subproblems are 
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first computed in parallel by three flat apply-to-each expressions, and then recursively 
solved in parallel by means of a nested apply-to-each. 

2.2 The Target Language 
Omitting the apply-to-each construct in the target language means that we lose the abil- 
ity to express nested parallel computations. However, the apply-to-each also allowed us 
to express general fiat parallel evaluation of expressions. In order to recover this abil- 
ity, we introduce a functional called lifting: lifting maps a function f :: c~ --~ fl to the 
function f* :: {a} -4 {fl} such that semantically and operationally f*(xs)  = {f (x)  I 
x 4- xs}.  In other words, f* denotes the computation that applies f in parallel to all 
the elements of the argument vector; f is lifted to the level of vectors. This highlights 
the fact that in the target language all parallel computation is expressed at the level of 
vectors; the individual elements of the vectors are not visible. This, then, appears to be 
the right level of abstraction for implementing data parallelism. 

2.3 Simple Laws 
A subtle difference exists between lifting and the map functional  9 known from func- 
tional languages, or the list calculus [3]: in accordance with the lockstep evaluation of 
multiple generator bindings, lifting maps an n-ary function f :: t~l • .-.  • tx,~ ~ fl to 
f f  of type {ch } •  x {C~n} --4 {fl}, which is a partial function that is only defined if 
all argument vectors have the same length. Consequently, f* is, in general, not equal to 
f *  :: {al  x - - -  x o~,~} -4 {fl}. Another partial function is the vector constructor, which 
accepts only tuples of homogeneously typed arguments. Calculation with partial func- 
tions is addressed by Gries and Schneider [11], and we follow their approach. However, 
when stating laws, we tacitly drop hypotheses requiring equal length or homogeneity 
of types of the arguments whenever these constraints can be easily derived from the 
context. Below we denote multiple lifting of a function f by f(nt~ = ( f ( n - l t ~ ) t  This 
should be distinguished from the repeated composition of f ,  denoted by f'~ = f o fn -1 .  

The target language supplies for each primitive operation its lifted version. It also 
provides lifted versions of the vector constructor which we denote by {.}~. Moreover, 
a lifted variant of the case distinction of type {Bool} • {t~} x {t~} --4 {c~} exists. It 
constructs a result vector by making a selection from either its second or third argument 
vector, depending on the corresponding Boolean value in its first argument vector. 1 

For our subsequent calculations, we now introduce two meta level operations. First, 
n 

71" i : : O Q  X " ' "  X O t n - ' f f  OLi~ I < i < T& 

denotes the projection along the ith component of an n-ary product, i.e. it is defined by 
7r n = A(x l , . . .  , xn).xi .  Second, 

zip n :: {oL1} x . . - X  {OLn} - 4  {OL 1 x " -  x O~n} 
denotes the lifted version of the n-ary Cartesian product, i.e., given n vectors of equal 
length, zip n constructs the corresponding vector of products. Note that z ip  1 is the iden- 
tity. By abuse of notation, we subsequently drop the index n and calculate with ?ri and 
zip only. We can now specify the relationship between lifting and map: 

1 Strictly speaking, this lifted operation is not primitive, since it is no data-parallel computation. 
It can be expressed in terms of two primitive data-parallel operations--pack and combine--- 
which, without loss of generality and for the sake of brevity, we do not consider in this paper. 
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(Meta-1) Lif t ing-map: f t  = f .  o zip 
and, since 7ri* o zip = 7ri: 
(Meta-2) Lif ted project ion: 7ri t = 7ri 
Furthermore, we can establish the following relationships: 
(Meta-3) Select ion-project ion: (!i) o {.} = 7rl 
(Meta-4) Select ion-map:  (!i) o f *  = f o (!i) 

Lifting plays an important part in the transformation rules of Sect. 3, where it is 
used to describe how the body expression of an apply-to-each is "lifted" from its point- 
wise form to a corresponding vectorwise form. An equally important part is played 
by the two primitive operations flatten ~- and partition 7 9 (see Tab. 1). Recall that ~" 
takes a vector of vectors and concatenates the subvectors. Thus, .T :: {{a}} --4 {t~} 
removes  the top-level nesting structure of a nested vector. Conversely, partition 79 :: 
{{fl}} • {a} --+ {{a}} imprints  the topmost nesting structure of a given nested vector 
on a second vector. Partition is partial, as described in Tab. 1. Removing the top n nest- 
ing levels is denoted by 9 rn.  Similarly, 79n s denotes the partitioning according to the top 
n levels of a nested vector xs,  i.e. 79xns = 79=s o 79~i-~s)" By iterating the condition on 79 
we find that 79ms (ys )  is defined if 7 9 ~ s ) ( y s )  is defined and r = #:7: (xs ) .  

. . . . .  and--  - - The next two laws state an inverse relationship between J- /-': 
(Flatten-1) Lef t  inverse: (79xns ~ 2 :n) xs  = xs  
(Flatten-2) Right  inverse: ( ~ n  o 79~s) ys = ys  
The application of a k-fold lifted m-ary function to an m-tuple ~'~ of nested vectors 
does not alter the nesting structure up to level k. In particular, we may partition with 
respect to the structure of any component ~~i because they are equal: 
(Flatten-3) Partition: n ~)f(k*)(~-g)  --'-- ~3x~-'g i , k > n 
Counterparts to the map-reduce-promotion and map-promotion laws of the list calculus 
are the following two laws; let k denote the arity of f :  
(Flatten-4) Lif t ing- f lat tenpromotion:  ~ ~ f(n+lt)  = f (n t )  o ( ~  x . .-  x Y'), n _> 1 

(Flatten-5) Lift ing promotion:  f*  ~ g* = ( f  * g) * k times 
TO prove the latter rule, note that typing constraints force f to be unary. 

3 Basic Flattening Transformation 
Translating nested data-parallel programs into fiat programs requires the transformation 
of a "pointwise" apply-to-each, possibly expressing nested parallelism, into an equiva- 
lent "vectorwise" function of the target language. It is crucial that this transformation, 
known as "flattening nested data parallelism" [4], preserves the degree of parallelism 
specified in the original program [15]. We now present a basic set of transformation 
rules for flattening nested parallelism in terms of the algebraic framework of the pre- 
vious section. The rules control three separate tasks: elimination of the apply-to-each; 
lifting user-defined functions; and reduction of multiply lifted to singly lifted functions. 

Eliminating the Apply-to-Each Construct. Without loss of generality, we assume 
that apply-to-each constructs are of the form {e [ ~ +-- xs } ,  where :~ may be a variable 
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of product type (with explicitly named components), in which case xs  is a vector of 
products. This normal form can be generated by the following set of rules: 

{e I =1 ~ e l , . . . ,  = ,  ~ e , :  p} = {e I ( x , , . . . ,  ~ , )  ~ z i p ( ~ l , . . . ,  e , ) :  p} 
{e I 57 +-" e ' :  p} = {e [ 57 +-- pack(g,  (M:.p)  9 e')} 

{e 157 +- e'} = le t  xs  = e' in  {e I Y7 +-- x s }  

The remaining apply-to-each expressions are replaced by a meta-level map expression: 

By this process, we end up with an expression from which all apply-to-each constructs 
are removed, but at the cost of introducing meta-level map constructs and lambda terms. 

The following set of transformation rules successively replace these newly intro- 
duced terms by constructs of our target language. We start with two simple cases: map- 
ping the identity or a constant expression over a vector (c  9 x s  = dist(c, #xs) ) :  
(Trafo-1) Ident i ty:  (A57.57) * xs  = x s  

(Trafo-2) Cons tan t :  (A57.c) * xs  = c  9 x s  

Consider next the case ( ) ~ x . f ( ~ ) )   9 xs ,  where f is either primitive or user-defined. 
We can lift f and factor it out of the abstraction. This also holds if f is already lifted; 
we then merely lift it once more. Thus, by writing f(0,~ for f ,  we arrive at the rule: 
(Trafo-3) App l i ca t ion :  

( ) ~ 5 7 . f ( n t ) ( e l , . . .  , e n ) )  * xs  : f(n+X*)((A57.e1) * x s , . . .  , (~57.en) * x s )  

Note that multiply lifted functions are not part of the target language. They need to be 
further transformed, which is the job of the last set of rules given below. 

Finally, we consider let bindings and case distinctions in the body of an abstraction: 
(Trafo-4) L e t  b inding:  ()~57.1et a = b in  e) * xs  = le t  as = (~57.b) * x s  

in  ()~(57, a).e)  9 zip(xs, as)  
(Trafo-5) C a s e  dis t inct ion:  

(~57.if b t h e n  el else e2) * xs  = if* ( ~ . b )   9 xs  then*  (A57.el) * xs  
else* (A2.e2) * x s  

Lifting Defined Functions. Lifting defined functions is expressed in terms of lifted 
primitive operations, which are part of the target language. For each function definition 

f :: ~1 •  • ~ .  -~  Z f ( Z l , . . .  , z n )  = e 
we construct the lifting f '  :: {oq} • 2 1 5  {a,~} ~ {fl} by applying the rule: 
(Trafo-6) D e f i n e d  f u n c t i o n s :  f *  (~-g) = ( A ( x t , . . .  , X n ) . e )  * zip(~-~) 
The right-hand side is then further transformed by the other rules. 

Eliminating Multiply Lifted Functions. As we have seen, the rule Trafo-3 may intro- 
duce multiply lifted functions, but, by using ~ and 79, multiple lifting can be expressed 
in terms of single lifting. (Here, ~ denotes the appropriate product of.T's.) 

f~-*~(~) ,~-~ o .r ~-~ = (P~,-*)(~) ~ f('~*~)(~~) {Flatten-I} 
= ( p ~  1 o f ,  o ~r~- 1) (~)  {Flatten-3, Flatten-4 repeatedly) 

Hence, multiply lifted functions can be eliminated by the repeated application of .T and 
7 9 . Operationally, they merely alter the structure, no computation being involved. 
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(Trafo-7) Multiply lifted functions: f(n,)(~-g) = (7~71 o f , o  ~ ,~-1)(~)  
Note that this transformation preserves the degree of parallelism of the left-hand side: 
f is still applied to all elements of the argument vector in a single parallel step. 

4 I m p r o v e d  T r a n s f o r m a t i o n  R u l e s  

This section presents improvements on the transformation rules given in the previous 
section. We prove the correctness of these optimizations but only give indications as to 
why they improve the original transformation. 
Lifting defined functions. For any f ,  we have the identity f* (~-g) = i f  X'Sl 
{} t h e n  {} else  f ,  (~-g). By unfolding Trafo-6 with this identity, we obtain: 
(Opt- 1) Defined functions: 

f t  (~--g) = i f  ~ 1  = {} t h e n  {} else ( A ( x l , . . . ,  xn).e)  * zip(~'~) 
This rule prevents the trivial vector from being passed down the expression tree until 
the primitive lifted functions have a chance to recognize it. 
Distributing constant values over nested vectors. Whenever a function that depends 
on a constant is applied to each element of a vector, the constant has to be distributed 
over the vector. Consider the following identity where the left-hand side expresses the 
addition of a constant c to each element of a nested vector X. 

{{c + = I  9 ~ ~s} I ~s +- x }  = px(a:((~, x )  .* x )  +* a~(x)) 

The evaluation of c * X is realized by simply broadcasting c, but ** requires an expen- 
sive general communication operation, which in this case can be avoided: 

( c .  x )  .* x = (~,,.c)  9 x .* ( ~ , , . = ) ,  x 
= (Ay.c  9 y) * X 
= (;~x.e)* * X 
= * ' x ( 7 ( ( ~ * . e ) *  * X ) )  
= p x ( e .  ~ - ( x ) )  

{Trafo-2,Trafo- 1 } 
{Trafo-3} 

{Trafo-2, r/-conversion} 
{Flatten- 1 } 

{map reduce promotion, Trafo-2} 

Thus, lifted distributes can be replaced by a simple broadcast: 
(Opt-2) Distributing constants over nested vectors: 

(c  9 x )  , '  x = *'x (c  9 a~(x)) 
This rule also covers nesting depth greater than 2. For instance, let X be of nesting 
depth three, then the resulting expression can be further transformed: 

79x(.T((e  9 X )  .'t X )  .* Yr(X)) = Px(Yr(79x(c * bY(X))) "* 3c(X)) {Opt-2} 
= 79x (c * ~'(X) .* ~'(X)) {Flatten-2} 
= "P~c (c * .T'= (X)) {Opt-2} 

Indexing. Transforming the expression {X ! i [ i +-- I} yields (X * I) [* I.  This causes 
X to be distributed first over the length of the index vector I,  before a lifted indexing 
selects individual elements from the distributed copies. Hence, the intuitive work of the 
order O ( # I ) ,  suggested by the original expression, increases to O ( # X   9 # I ) .  But the 
intended functionality is already provided by the permutation primitive: 
(Opt-3) Indexing: (X * I) !* I = permute(X, I) 
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Distributing constant expressions. The transformation rule Trafo-2 only allows con- 
stant values to be distributed. By extending this rule to constant expressions 
(Opt-4) C o n s t a n t  express ions :  ( A ~ . e )   9 x s  = e  9 x s ,   9 not free in e 
we avoid inefficiencies that result from transforming nested apply-to-each expressions, 
where a generator merely serves as a replicator. Consider the expression {{c + x [ y +-- 
ys  } I x +- x s  } and its transformation ( ( c  9 x s  )  9 t ( ys   9 x s  ) ) +(2~) ( x s   9162 ( ys   9 x s  ) ).  T h e  
vectors c  9 x s  and xs  are first distributed over the same structure ys   9 x s ,  and then the 
elements of the resulting nested vectors are added. Distributing the constant expression 
yields ( (c  9  x s ) + r   9 ( y s   9 x s ) ,  adding first involving less work and distributing later. 

The notation x  9 x s  = dist(x, # x s )  hides a further opportunity for optimizing lifted 
distributes. Consider the expression xs   9 ( y s  * z s ) .  Using the definition of o, we trans- 
form it into distt(xs, #*(dist(ys,  # z s ) ) )  : y s  is first distributed over the length of zs ,  
and then the length of each copy is computed. Alternatively, we first compute the length 
of ys ,  and then distribute it over zs: distt(xs, d is t (#ys ,  # z s ) ) .  This is summarized by 
the identity f ,  o dist = dist o ( f  x id) 

Extract.  Frequently, vectors are constructed merely to apply an operation in parallel on 
its elements, and deconstructed right after this by selection operations. The Quicksort 
algorithm is an example of such a situation. During the transformation of expressions 
of this nature, subexpressions of the form ( ! i )*  * f * *  o {-}* arise. If we think of a tuple 
of vectors of equal length as a tuple of rows, i.e. a matrix, then this expression means 
that the matrix is first transposed, then a function is applied to all its elements, and 
finally the ith column is extracted. Instead, we could simply apply f to all elements of 
the matrix and extract the ith row. This observation is justified by calculation: 

(!i), o f * * .  {.}~ = I * ~  ( ! i ) , .  {.}' 
= I * o  (! i ) ,  ~ { . } , 0  ,.ip 
= f* o 7ri* o zip 

f *  o 71" i 

= f , ~  ( ! i )~  {} 
= ( ! i ) ,  f * * o  {.} 

We have derived the following rule: 
(Opt-5) Extrac t :  (!i) .  o f * * o  {.}t = (!i) o f * * o  {.} 

5 D i s c u s s i o n  

{map promotion, Meta-4} 
{Meta-1} 

{map promotion, Meta-3} 
{Meta- 1, Meta-2} 

{Meta-3} 
{Meta-4} 

Experiments. To support our claim that the transformation rules in Sect. 4 are indeed 
optimizations, we performed several experiments. We describe here briefly the results 
of these benchmarks, executed on a Sun4/50 and a Cray J932 vector processor. Since 
the complete compiIer that uses the optimization rules is not yet finished, the programs 
were manually transformed into C plus calls to the CVL. CVL (C Vector Library [7]) 
implements those primitives of the target language that operate on vectors; it was origi- 
nally designed and implemented for Nesl [5]. Our manual transformation was executed 
mechanically to ensure that all steps can be easily applied in the compiler. 

The amount of time saved through the optimization induced by Opt- 1 - -  when ap- 
plied to Quicksort--  was, as expected, logarithmic to the problem size, since it depends 
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on the number of  function calls. To sort a sequence of 10 000 numbers, it was two per- 
cent of the overall running time. The time savings through Opt-2 were linear to the 
problem size, about a factor 1.5. For Opt-3, no benchmarks were performed, because 
the work-complexity of the nonoptimized computation is higher, and the outcome is 
therefore clear. Depending on the work-complexity needed to compute the expression 
in Opt-4, the application of the rule also decreases the work complexity. We therefore 
executed for this rule only those benchmarks, for which the work complexity did not 
change: d i s t (#ys ,  xs) vs. # t  (dist(ys, xs)) and (a * xs) +~ (b* ys) vs. (a+ b) * xs. In 
both cases, the speedups obtained by the optimizations were about a factor of four. The 
benchmarks for Opt-5 yielded a speedup by a factor of 6, lifted concatenation as well 
as lifted extraction on vectors being far more time consuming than the plain versions. 

Related work. Palmer et al. [15] proceed much along the same lines as we do. They 
introduce equations on vector expressions that are used to implement flattening. Al- 
though their transformations and our formalism share common features, there are im- 
portant differences. Most important is our emphasis on a calculational approach that 
interprets apply-to-each constructs as map operations. As a result, our transformation 
rules follow from the algebraic properties stated in Sect. 2, instead of being introduced 
ad hoc. The optimizations achieved by Palmer et al. are partly the same as those in 
Sect. 4, but, given our calculationai approach, we are able to simplify and generalize 
them. In particular, we are able to avoid introducing new primitives when dealing with 
the problems of distributing constant values and parallel indexing. Also, our formalism 
(rule Opt-4) picks up optimizations that the expression hoisting of Palmer et al. fails 
to consider (cf. the dist problem). Other optimizations like Flatten-2 and Opt-5 are, to 
the best of our knowledge, unique to our approach. Prins et al. [17] formally demon- 
strate that the flattening transformation is work-efficient. A similar statement for our 
formalism still remains to be verified, and we hope to be able to adapt their reasoning. 

Conclusion. We presented a formal framework for expressing the flattening transfor- 
marion using a set of transformation rules that translate nested data-parallel functional 
programs into flat data-parallel programs. Our aim was to obtain a precise understand- 
ing of the flattening process, and to express it in the form of a concise set of clear rules 
in an equational style, facilitating the development of new optimizations and the veri- 
fication of the translation. While we failed to provide a completely formal verification 
of the rules, our experiments did provide evidence that the new rules result in a number 
of useful optimizations that are an improvement on previous implementations. The cal- 
culational style supported by the formalism is well-suited for compiler design and rig- 
orous reasoning. There is still room for improvement of the calculus. The way we treat 
meta tuples w in a rather backstage manner - -  is unsatisfactory. Moreover, we have 
not yet exploited all the algebraic properties of our language's constructs. For instance, 
nesting generators corresponds to taking the tensor product of the data space, whereas 
parallel generators correspond to taking the Cartesian product. Here we plan to inves- 
tigate whether we can suitably adopt the semantic notion of "shapes" [13]. There are a 
number of questions requiring further research in the area of flattening nested data par- 
allelism. Current implementations of nested data-parallel languages are based on the 
CVL vector library [7]. During development of the new transformation rules and from 
experience gained in the implementation of V [9], it became clear that a different set 
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of  operations from those supported by the CVL would allow the generation of  more ef- 
ficient code. A new vector library that improves on these observed deficiencies should 
be carefully designed and implemented. Another research task would be to extend the 
presented rules to allow the lranslation of  imperative languages like V. One line we plan 
to pursue here is the integration of  imperative constructs by means of  monads [14, 20]. 
This would allow the controlled introduction of  imperative features such as mutable 
variables. 
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