
A Calculational Approach to Flattening
Nested Data Parallelism in Functional Languages

Gabriele Keller and Martin Simons

Technische Universit~it Berlin
Forschungsgruppe Softwaretechuik*

Abstract. The data-parallel programming model is currently the most success-
ful model for programming massively parallel computers. Unfortunately, it is, in
its present form, restricted to exploitingflat data parallelism, which is not suitable
for some classes of algorithms, e.g. those operating on irregular structures. Re-
cently, some effort has been made to implement nested data-parallel programs ef-
ficiently by compiling them into equivalent fiat programs using a transformation
called flattening. However, previous translations of nested into flat data-parallel
programs have proved unwieldy when it comes to inventing and specifying opti-
mizations and verifying the translation. This paper presents a new formalization
of the flattening transformation in a calculational style. The formalization is eas-
ily verified and provides a good starting point for the development of new opti-
mizations. Some optimizations invented on the basis of this new formalism are
described. Furthermore, we present practical evidence obtained by experiment-
ing with an implementation of the transformation.

Keywords: parallel programming; functional programming; nested data parallelism;
flattening transformation; implementation; calculational method.

1 Introduction
Today 's most successful approaches to parallel programming are based on the data-
parallel programming model. There are two main reasons for this: first, such program-
ming models are comparatively easy to use from the programmer ' s point of view; sec-
ond, their simplicity has led to a number of efficient implementations. They are, how-
ever, in the form they are mostly used - - as flat data parallelism - - quite restricted.
Languages based on this kind of parallelism, like C* [19] and HPF [12], make it diffi-
cult to fully exploit the parallelism of algorithms that work on irregular data structures.
On the other hand, this restriction facilitates the generation of efficient code.

Nested data parallelism, as employed, e.g. in Nesl [8], Paralation Lisp [18], and
Proteus [16], overcomes this restriction [6] while still having the potential for efficient
implementation. Blelloch [4] provided the basis for such implementations by showing,
for a functional language that was extended to express nested data parallelism, that such
a language can be transformed mechanically into code using fiat data parallelism only.
The results, given in [8], show that this code can be executed efficiently on a wide range
of parallel machines, f rom vector computers to SIMD and M I M D machines.

* TU Berlin, Forschungsgruppe Softwaretechuik (FR5-6), Franklinstr. 28129, D-10587 Berlin.
e-mail: {keller, simons} @cs.tu-berlin.de

235

Expr
I
I
I
I
I

ExprList

Vat I Const
FunName ([ExprList])
{[ExprList]}
let (Vax : Expr) + in Expr
if Expr t hen Expr e l s e Expr
{Expr I Generators : Expr}

I

- - variables and constant expressions
- - function application
- - vector construction
- - let binding
- - case distinction
- - apply-to-each (source language only)

Expr Generators := Vax +-- Expr
Expr, ExprList I Var +-- Expr, Generators

Fig. 1. Syntax of the source and the target languages

Although the basics of the transformation are clear, applying it to a concrete lan-
guage easily leads to unwieldy and complicated transformation rules: their implemen-
tation becomes error-prone, and possible opportunities for optimization are hidden. In
addition, extending the transformation to handle imperative features adds considerably
to the difficulties encountered with functional languages [1, 9]. These problems call for
a simple and compact formalism to describe the transformation. This paper introduces
such a formalism, specifically designed to simplify calculations [2]. Moreover, we pre-
sent the flattening transformation completely within this formal framework to facilitate
correctness proofs and to make the calculational derivation of optimizations possible.

The paper is organized as follows. In Sect. 2, we introduce the formalism and state
some simple laws. Sect. 3 presents the basic transformation rules controling the flatten-
ing process. In Sect. 4, we derive several optimizations of the basic set of rules. Sect. 5
concludes the paper by presenting some performance data obtained from an experimen-
tal implementation of the flattening transformation, as well as a brief review of related
and a discussion of future work.

2 N e s t e d D a t a P a r a l l e l i s m

Efficient implementations of nested data parallelism currently rely on the fact that the
latter can be transformed mechanically into flat data parallelism. To express this flatten-
ing transformation formally, we introduce two functional languages: a source language
allowing the expression of nested data parallelism, and a target language allowing the
expression of fiat data parallelism only. Both languages share the same syntax (see
Fig. 1) the only difference being that the construct used to express nested data paral-
lelism - - apply-to-each - - is unavailable in the target language. Flattening is specified
in Sect. 3 by a set of rewrite rules translating source into equivalent target expressions.

2 . 1 T h e S o u r c e L a n g u a g e

The source language is a strongly typed, strict, first-order functional language. It has
one class of type constructors: vector constructors {-} of arbitrary but finite arity. Vec-
tors, like lists in Haskell or ML, are linearly ordered, homogeneously typed sets of
arbitrary but finite size, and can also contain vectors of the same type as elements.
They play a central role, since parallelism can only be expressed by operations on
vectors. The language offers a set of primitive parallel operations on vectors, some
of which are described in Tab. 1. General parallel computations are specified by the

236

:: {ce} - + Int
! :: {c~} x In t --+ ce
~+ :: {~} x {~} -~ {~}
dist :: a x In t --> { a }

permute :: {a} x {Int} ~ {a}

pack :: {a} • {Bool} ~ {c,}

e_scan :: {~} -* {#}

e_reduce :: {a} --~ fl

length of a vector
xs!n returns the nth element of vector xs.
concatenation of two vectors
dist(x,n) creates a vector of length n with zs as its ele-
ments; we denote dist(x, # x s) by x 9 xs
constructs the permutation of a given vector according to a
given permutation vector
constructs a vector by taking from a given vector all ele-
ments corresponding to a true value in a given flag vector
for each monoid operator @ with identity 1~ (e.g.
+ , . , rain, max), @_scan({xl,... , xn}) computes the pre-
fix sum {1r x l , . . . , Xl e ' ' " e Xn--1}
e_reduee({xl , . . . , xn}) computes the generalized sum of
the argument vector x l 9 9 .. e xn.
discards the top-level structure of a nested vector
given a nested vector xs and a vector ys such that # y s =
#.T'(xs), 79~ (ys) denotes the partition of ys induced by the
top-level structure of xs

Tab. 1. Some primitive parallel operations

"apply-to-each" construct whose notation is derived f rom list-comprehension: the ex-
pression { f x I x +-- xs : p x } denotes the vector that results f rom evaluating in parallel
the body f x for all those elements x taken f rom the vector xs for which the Boolean
expression p x evaluates to true. For instance, the expression {2 * x [x +-- {1, 2, 5, 8} :
even(x)} evaluates to {4,16}. An apply-to-each can have multiple generators, as in
{x + y [x 6-- {1 ,2} ,y 6- {5,8}}, in which case the bindings are evaluated in a
lockstep fashion provided that the generating vectors have the same length. Thus, the
last expression evaluates to {6, 10}. This distinguishes "vector-comprehension" from
list-comprehension, where bindings are evaluated in a combinatory fashion.

The only way to express nested parallel computations is to make the body of an
apply-to-each itself a parallel computation. Let us illustrate the use of nested data
parallelism by a small example. Quicksort, a classical divide-and-conquer algorithm,
contains two sources of parallelism.
First, the division of the problem
into subproblems can be solved in
parallel, i.e. it can be decided in par-
allel for each element of a vector
whether it is less than, equal to, or
greater than a fixed pivot element.
This kind of parallelism within a func-

qsort(xs) =
i f --ff:xs <: 1 t h e n xs
else let m = xs[#xs /2]

s = { x l x ~ xs : x <m}
g = { x l x +-xs : x > m }

in ~orted[0] q+ e q+ so~d[1]
tion is called intrafunctionparallel ism.
Second, the subproblems themselves can be solved in parallel by recursively applying
Quicksort to them. This kind of parallelism between function calls is called interfunc-
lion parallel ism. In a fiat data parallel language, one would - - without a substantial
amount of additional coding e f f o r t - - only be able to exploit one of the sources of paral-
lelism in this algorithm, because exploiting both requires parallel computations within
parallel computations. In our source language, on the other hand, the subproblems are

237

first computed in parallel by three flat apply-to-each expressions, and then recursively
solved in parallel by means of a nested apply-to-each.

2.2 The Target Language
Omitting the apply-to-each construct in the target language means that we lose the abil-
ity to express nested parallel computations. However, the apply-to-each also allowed us
to express general fiat parallel evaluation of expressions. In order to recover this abil-
ity, we introduce a functional called lifting: lifting maps a function f :: c~ --~ fl to the
function f* :: {a} -4 {fl} such that semantically and operationally f*(xs) = {f (x) I
x 4- xs}. In other words, f* denotes the computation that applies f in parallel to all
the elements of the argument vector; f is lifted to the level of vectors. This highlights
the fact that in the target language all parallel computation is expressed at the level of
vectors; the individual elements of the vectors are not visible. This, then, appears to be
the right level of abstraction for implementing data parallelism.

2.3 Simple Laws
A subtle difference exists between lifting and the map functional 9 known from func-
tional languages, or the list calculus [3]: in accordance with the lockstep evaluation of
multiple generator bindings, lifting maps an n-ary function f :: t~l • .-. • tx,~ ~ fl to
f f of type {ch } • x {C~n} --4 {fl}, which is a partial function that is only defined if
all argument vectors have the same length. Consequently, f* is, in general, not equal to
f * :: {al x - - - x o~,~} -4 {fl}. Another partial function is the vector constructor, which
accepts only tuples of homogeneously typed arguments. Calculation with partial func-
tions is addressed by Gries and Schneider [11], and we follow their approach. However,
when stating laws, we tacitly drop hypotheses requiring equal length or homogeneity
of types of the arguments whenever these constraints can be easily derived from the
context. Below we denote multiple lifting of a function f by f(nt~ = (f (n - l t ~) t This
should be distinguished from the repeated composition of f , denoted by f'~ = f o fn -1 .

The target language supplies for each primitive operation its lifted version. It also
provides lifted versions of the vector constructor which we denote by {.}~. Moreover,
a lifted variant of the case distinction of type {Bool} • {t~} x {t~} --4 {c~} exists. It
constructs a result vector by making a selection from either its second or third argument
vector, depending on the corresponding Boolean value in its first argument vector. 1

For our subsequent calculations, we now introduce two meta level operations. First,
n

71" i : : O Q X " ' " X O t n - ' f f OLi~ I < i < T&

denotes the projection along the ith component of an n-ary product, i.e. it is defined by
7r n = A(x l , . . . , xn).xi . Second,

zip n :: {oL1} x . . - X {OLn} - 4 {OL 1 x " - x O~n}
denotes the lifted version of the n-ary Cartesian product, i.e., given n vectors of equal
length, zip n constructs the corresponding vector of products. Note that z ip 1 is the iden-
tity. By abuse of notation, we subsequently drop the index n and calculate with ?ri and
zip only. We can now specify the relationship between lifting and map:

1 Strictly speaking, this lifted operation is not primitive, since it is no data-parallel computation.
It can be expressed in terms of two primitive data-parallel operations--pack and combine---
which, without loss of generality and for the sake of brevity, we do not consider in this paper.

238

(Meta-1) Lif t ing-map: f t = f . o zip
and, since 7ri* o zip = 7ri:
(Meta-2) Lif ted project ion: 7ri t = 7ri
Furthermore, we can establish the following relationships:
(Meta-3) Select ion-project ion: (!i) o {.} = 7rl
(Meta-4) Select ion-map: (!i) o f * = f o (!i)

Lifting plays an important part in the transformation rules of Sect. 3, where it is
used to describe how the body expression of an apply-to-each is "lifted" from its point-
wise form to a corresponding vectorwise form. An equally important part is played
by the two primitive operations flatten ~- and partition 7 9 (see Tab. 1). Recall that ~"
takes a vector of vectors and concatenates the subvectors. Thus, .T :: {{a}} --4 {t~}
removes the top-level nesting structure of a nested vector. Conversely, partition 79 ::
{{fl}} • {a} --+ {{a}} imprints the topmost nesting structure of a given nested vector
on a second vector. Partition is partial, as described in Tab. 1. Removing the top n nest-
ing levels is denoted by 9 rn. Similarly, 79n s denotes the partitioning according to the top
n levels of a nested vector xs, i.e. 79xns = 79=s o 79~i-~s)" By iterating the condition on 79
we find that 79ms (ys) is defined if 7 9 ~ s) (y s) is defined and r = #:7: (xs) .

. and-- - - The next two laws state an inverse relationship between J- /-':
(Flatten-1) Lef t inverse: (79xns ~ 2 :n) xs = xs
(Flatten-2) Right inverse: (~ n o 79~s) ys = ys
The application of a k-fold lifted m-ary function to an m-tuple ~'~ of nested vectors
does not alter the nesting structure up to level k. In particular, we may partition with
respect to the structure of any component ~~i because they are equal:
(Flatten-3) Partition: n ~)f(k*)(~-g) --'-- ~3x~-'g i , k > n
Counterparts to the map-reduce-promotion and map-promotion laws of the list calculus
are the following two laws; let k denote the arity of f :
(Flatten-4) Lif t ing- f lat tenpromotion: ~ ~ f(n+lt) = f (n t) o (~ x . .- x Y'), n _> 1

(Flatten-5) Lift ing promotion: f* ~ g* = (f * g) * k times
TO prove the latter rule, note that typing constraints force f to be unary.

3 Basic Flattening Transformation
Translating nested data-parallel programs into fiat programs requires the transformation
of a "pointwise" apply-to-each, possibly expressing nested parallelism, into an equiva-
lent "vectorwise" function of the target language. It is crucial that this transformation,
known as "flattening nested data parallelism" [4], preserves the degree of parallelism
specified in the original program [15]. We now present a basic set of transformation
rules for flattening nested parallelism in terms of the algebraic framework of the pre-
vious section. The rules control three separate tasks: elimination of the apply-to-each;
lifting user-defined functions; and reduction of multiply lifted to singly lifted functions.

Eliminating the Apply-to-Each Construct. Without loss of generality, we assume
that apply-to-each constructs are of the form {e [~ +-- xs } , where :~ may be a variable

239

of product type (with explicitly named components), in which case xs is a vector of
products. This normal form can be generated by the following set of rules:

{e I =1 ~ e l , . . . , = , ~ e , : p} = {e I (x , , . . . , ~ ,) ~ z i p (~ l , . . . , e ,) : p}
{e I 57 +-" e ' : p} = {e [57 +-- pack(g, (M:.p) 9 e')}

{e 157 +- e'} = le t xs = e' in {e I Y7 +-- x s }

The remaining apply-to-each expressions are replaced by a meta-level map expression:

By this process, we end up with an expression from which all apply-to-each constructs
are removed, but at the cost of introducing meta-level map constructs and lambda terms.

The following set of transformation rules successively replace these newly intro-
duced terms by constructs of our target language. We start with two simple cases: map-
ping the identity or a constant expression over a vector (c 9 x s = dist(c, #xs)) :
(Trafo-1) Ident i ty: (A57.57) * xs = x s

(Trafo-2) Cons tan t : (A57.c) * xs = c 9 x s

Consider next the case () ~ x . f (~)) 9 xs , where f is either primitive or user-defined.
We can lift f and factor it out of the abstraction. This also holds if f is already lifted;
we then merely lift it once more. Thus, by writing f(0,~ for f , we arrive at the rule:
(Trafo-3) App l i ca t ion :

() ~ 5 7 . f (n t) (e l , . . . , e n)) * xs : f(n+X*)((A57.e1) * x s , . . . , (~57.en) * x s)

Note that multiply lifted functions are not part of the target language. They need to be
further transformed, which is the job of the last set of rules given below.

Finally, we consider let bindings and case distinctions in the body of an abstraction:
(Trafo-4) L e t b inding: ()~57.1et a = b in e) * xs = le t as = (~57.b) * x s

in ()~(57, a).e) 9 zip(xs, as)
(Trafo-5) C a s e dis t inct ion:

(~57.if b t h e n el else e2) * xs = if* (~ . b) 9 xs then* (A57.el) * xs
else* (A2.e2) * x s

Lifting Defined Functions. Lifting defined functions is expressed in terms of lifted
primitive operations, which are part of the target language. For each function definition

f :: ~1 • • ~ . -~ Z f (Z l , . . . , z n) = e
we construct the lifting f ' :: {oq} • 2 1 5 {a,~} ~ {fl} by applying the rule:
(Trafo-6) D e f i n e d f u n c t i o n s : f * (~-g) = (A (x t , . . . , X n) . e) * zip(~-~)
The right-hand side is then further transformed by the other rules.

Eliminating Multiply Lifted Functions. As we have seen, the rule Trafo-3 may intro-
duce multiply lifted functions, but, by using ~ and 79, multiple lifting can be expressed
in terms of single lifting. (Here, ~ denotes the appropriate product of.T's.)

f~-*~(~) ,~-~ o .r ~-~ = (P~,-*)(~) ~ f('~*~)(~~) {Flatten-I}
= (p ~ 1 o f , o ~r~- 1) (~) {Flatten-3, Flatten-4 repeatedly)

Hence, multiply lifted functions can be eliminated by the repeated application of .T and
7 9 . Operationally, they merely alter the structure, no computation being involved.

240

(Trafo-7) Multiply lifted functions: f(n,)(~-g) = (7~71 o f , o ~ ,~-1)(~)
Note that this transformation preserves the degree of parallelism of the left-hand side:
f is still applied to all elements of the argument vector in a single parallel step.

4 I m p r o v e d T r a n s f o r m a t i o n R u l e s

This section presents improvements on the transformation rules given in the previous
section. We prove the correctness of these optimizations but only give indications as to
why they improve the original transformation.
Lifting defined functions. For any f , we have the identity f* (~-g) = i f X'Sl
{} t h e n {} else f , (~-g). By unfolding Trafo-6 with this identity, we obtain:
(Opt- 1) Defined functions:

f t (~--g) = i f ~ 1 = {} t h e n {} else (A (x l , . . . , xn).e) * zip(~'~)
This rule prevents the trivial vector from being passed down the expression tree until
the primitive lifted functions have a chance to recognize it.
Distributing constant values over nested vectors. Whenever a function that depends
on a constant is applied to each element of a vector, the constant has to be distributed
over the vector. Consider the following identity where the left-hand side expresses the
addition of a constant c to each element of a nested vector X.

{{c + = I 9 ~ ~s} I ~s +- x } = px(a:((~, x) .* x) +* a~(x))

The evaluation of c * X is realized by simply broadcasting c, but ** requires an expen-
sive general communication operation, which in this case can be avoided:

(c . x) .* x = (~,,.c) 9 x .* (~ , , . =) , x
= (Ay.c 9 y) * X
= (;~x.e)* * X
= * ' x (7 ((~ * . e) * * X))
= p x (e . ~ - (x))

{Trafo-2,Trafo- 1 }
{Trafo-3}

{Trafo-2, r/-conversion}
{Flatten- 1 }

{map reduce promotion, Trafo-2}

Thus, lifted distributes can be replaced by a simple broadcast:
(Opt-2) Distributing constants over nested vectors:

(c 9 x) , ' x = *'x (c 9 a~(x))
This rule also covers nesting depth greater than 2. For instance, let X be of nesting
depth three, then the resulting expression can be further transformed:

79x(.T((e 9 X) .'t X) .* Yr(X)) = Px(Yr(79x(c * bY(X))) "* 3c(X)) {Opt-2}
= 79x (c * ~'(X) .* ~'(X)) {Flatten-2}
= "P~c (c * .T'= (X)) {Opt-2}

Indexing. Transforming the expression {X ! i [i +-- I} yields (X * I) [* I. This causes
X to be distributed first over the length of the index vector I, before a lifted indexing
selects individual elements from the distributed copies. Hence, the intuitive work of the
order O (# I) , suggested by the original expression, increases to O (# X 9 # I) . But the
intended functionality is already provided by the permutation primitive:
(Opt-3) Indexing: (X * I) !* I = permute(X, I)

241

Distributing constant expressions. The transformation rule Trafo-2 only allows con-
stant values to be distributed. By extending this rule to constant expressions
(Opt-4) C o n s t a n t express ions : (A ~ . e) 9 x s = e 9 x s , 9 not free in e
we avoid inefficiencies that result from transforming nested apply-to-each expressions,
where a generator merely serves as a replicator. Consider the expression {{c + x [y +--
ys } I x +- x s } and its transformation ((c 9 x s) 9 t (ys 9 x s)) +(2~) (x s 9162 (ys 9 x s)). T h e
vectors c 9 x s and xs are first distributed over the same structure ys 9 x s , and then the
elements of the resulting nested vectors are added. Distributing the constant expression
yields ((c 9 x s) + r 9 (y s 9 x s) , adding first involving less work and distributing later.

The notation x 9 x s = dist(x, # x s) hides a further opportunity for optimizing lifted
distributes. Consider the expression xs 9 (y s * z s) . Using the definition of o, we trans-
form it into distt(xs, #*(dist(ys, # z s))) : y s is first distributed over the length of zs ,
and then the length of each copy is computed. Alternatively, we first compute the length
of ys , and then distribute it over zs: distt(xs, d is t (#ys , # z s)) . This is summarized by
the identity f , o dist = dist o (f x id)

Extract. Frequently, vectors are constructed merely to apply an operation in parallel on
its elements, and deconstructed right after this by selection operations. The Quicksort
algorithm is an example of such a situation. During the transformation of expressions
of this nature, subexpressions of the form (! i)* * f * * o {-}* arise. If we think of a tuple
of vectors of equal length as a tuple of rows, i.e. a matrix, then this expression means
that the matrix is first transposed, then a function is applied to all its elements, and
finally the ith column is extracted. Instead, we could simply apply f to all elements of
the matrix and extract the ith row. This observation is justified by calculation:

(!i), o f * * . {.}~ = I * ~ (! i) , . {.}'
= I * o (! i) , ~ { . } , 0 ,.ip
= f* o 7ri* o zip

f * o 71" i

= f , ~ (! i)~ {}
= (! i) , f * * o {.}

We have derived the following rule:
(Opt-5) Extrac t : (!i) . o f * * o {.}t = (!i) o f * * o {.}

5 D i s c u s s i o n

{map promotion, Meta-4}
{Meta-1}

{map promotion, Meta-3}
{Meta- 1, Meta-2}

{Meta-3}
{Meta-4}

Experiments. To support our claim that the transformation rules in Sect. 4 are indeed
optimizations, we performed several experiments. We describe here briefly the results
of these benchmarks, executed on a Sun4/50 and a Cray J932 vector processor. Since
the complete compiIer that uses the optimization rules is not yet finished, the programs
were manually transformed into C plus calls to the CVL. CVL (C Vector Library [7])
implements those primitives of the target language that operate on vectors; it was origi-
nally designed and implemented for Nesl [5]. Our manual transformation was executed
mechanically to ensure that all steps can be easily applied in the compiler.

The amount of time saved through the optimization induced by Opt- 1 - - when ap-
plied to Quicksort-- was, as expected, logarithmic to the problem size, since it depends

242

on the number of function calls. To sort a sequence of 10 000 numbers, it was two per-
cent of the overall running time. The time savings through Opt-2 were linear to the
problem size, about a factor 1.5. For Opt-3, no benchmarks were performed, because
the work-complexity of the nonoptimized computation is higher, and the outcome is
therefore clear. Depending on the work-complexity needed to compute the expression
in Opt-4, the application of the rule also decreases the work complexity. We therefore
executed for this rule only those benchmarks, for which the work complexity did not
change: d i s t (#ys , xs) vs. # t (dist(ys, xs)) and (a * xs) +~ (b* ys) vs. (a+ b) * xs. In
both cases, the speedups obtained by the optimizations were about a factor of four. The
benchmarks for Opt-5 yielded a speedup by a factor of 6, lifted concatenation as well
as lifted extraction on vectors being far more time consuming than the plain versions.

Related work. Palmer et al. [15] proceed much along the same lines as we do. They
introduce equations on vector expressions that are used to implement flattening. Al-
though their transformations and our formalism share common features, there are im-
portant differences. Most important is our emphasis on a calculational approach that
interprets apply-to-each constructs as map operations. As a result, our transformation
rules follow from the algebraic properties stated in Sect. 2, instead of being introduced
ad hoc. The optimizations achieved by Palmer et al. are partly the same as those in
Sect. 4, but, given our calculationai approach, we are able to simplify and generalize
them. In particular, we are able to avoid introducing new primitives when dealing with
the problems of distributing constant values and parallel indexing. Also, our formalism
(rule Opt-4) picks up optimizations that the expression hoisting of Palmer et al. fails
to consider (cf. the dist problem). Other optimizations like Flatten-2 and Opt-5 are, to
the best of our knowledge, unique to our approach. Prins et al. [17] formally demon-
strate that the flattening transformation is work-efficient. A similar statement for our
formalism still remains to be verified, and we hope to be able to adapt their reasoning.

Conclusion. We presented a formal framework for expressing the flattening transfor-
marion using a set of transformation rules that translate nested data-parallel functional
programs into flat data-parallel programs. Our aim was to obtain a precise understand-
ing of the flattening process, and to express it in the form of a concise set of clear rules
in an equational style, facilitating the development of new optimizations and the veri-
fication of the translation. While we failed to provide a completely formal verification
of the rules, our experiments did provide evidence that the new rules result in a number
of useful optimizations that are an improvement on previous implementations. The cal-
culational style supported by the formalism is well-suited for compiler design and rig-
orous reasoning. There is still room for improvement of the calculus. The way we treat
meta tuples w in a rather backstage manner - - is unsatisfactory. Moreover, we have
not yet exploited all the algebraic properties of our language's constructs. For instance,
nesting generators corresponds to taking the tensor product of the data space, whereas
parallel generators correspond to taking the Cartesian product. Here we plan to inves-
tigate whether we can suitably adopt the semantic notion of "shapes" [13]. There are a
number of questions requiring further research in the area of flattening nested data par-
allelism. Current implementations of nested data-parallel languages are based on the
CVL vector library [7]. During development of the new transformation rules and from
experience gained in the implementation of V [9], it became clear that a different set

243

of operations from those supported by the CVL would allow the generation of more ef-
ficient code. A new vector library that improves on these observed deficiencies should
be carefully designed and implemented. Another research task would be to extend the
presented rules to allow the lranslation of imperative languages like V. One line we plan
to pursue here is the integration of imperative constructs by means of monads [14, 20].
This would allow the controlled introduction of imperative features such as mutable
variables.

Acknowledgments . We wish to thank M. Chakravarty for discussing numerous points
with us. Our thanks also go to Y. Guo, R. Joshi, M. K6hler, H. Lock, and W. Pfannen-
stiel for helpful comments on previous versions of this paper, to the members of the V
project, and to P. Bacon for polishing up the English. ~Ihe work of the first-named au-
thor is being supported by a scholarship from the German Research Foundation (DFG).

References
1. E K.T. Au, M. M.T. Chakravarty, J. Darlington, Y. Guo, S. J~nichen, G. Keller,

M. KOhler, M. Simons, and W. Pfannenstiel. Enlarging the scope of vector-based compu-
tations: extending Fortran 90 with nested data parallelism. In W. Giloi, ed., IntL Conf. on
Advances in Parallel and Distributed Computing. IEEE Computer Society, 1997.

2. R. Backhouse. The cahilational method. Inf. Process. Lett., 53, 1995.
3. R. Bird. An introduction to the theory of lists. In M. Broy, ed., Logic of Programming and

Calculi of Discrete Design, pp. 3--42. Springer, 1986.
4. G. E. Blelloch. Vector Models for Data-Parallel Computing. The MIT Press, 1990.
5. G. E. Blelloch. Nesl: A nested data-parallel language. TR CMU-CS-95-170, CMU, 1995.
6. G. E. Blelloch. Programming parallel algorithms. Commun. ACM, 39(3):85-97, 1996.
7. G. E. Blelloch, S. Chatterjee, J. C. Hardwick, M. Reid-Miller, J. Sipelstein, and M. Zagha.

CVL: A C vector library. TR CMU-CS-93-114, CMU, 1993.
8. G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and M. Zagha. Implementation

of a portable nested data-parallel language. J. Par. Distr. Comput., 21(1):4-14, 1994.
9. M. M. T. Chakravarty, E-W. Schr6er, and M. Simons. V--Nested parallelism in C. In Giloi

et al. [10], pp. 167-174.
10. W. K. Giloi, S. J~hnichen, and B. D. Shriver, eds. Programming Models for Massively Par-

allel Computers. IEEE Computer Society, 1995.
11. D. Gries and E B. Schneider. Avoiding the undefined by underspecification. In J. van

I-e~uwen, ed., Computer Science Today, LNCS 1000, pp. 366-373. Springer, 1996.
12. HPF Forum. HPF language specification (Version 1.0). Tech. rep., Rice University, 1993.
13. C. B. Jay. A semantics for shape. Sci. Comput. Programming, 25:251-283, 1995.
14. S. Liang and E Hudak. Modular denotational semantics for compiler construction. In H. R.

Nielson, ed., Europ. Syrup. on Programming (ESOP'96), LNCS 1058. Springer, 1996.
15. D. Palmer, J. Prins, and S. Westfold. Work-efficient nested data-parallelism. In 5th Symp.

on the Front. of Massively Parallel Processing. IEEE Computer Society, 1995.
16. J. Prins and D. Palmer. Transforming high-level data-parallel programs into vector opera-

tions. In 4th ACM Syrup. on Print. and Pract. of Parall. Programming, pp. 119-128, 1993.
17. J. W. Riely, J. Prins, and S. E Iyer. Provably correct veetorization of nested-parallel pro-

grams. In Giloi et al. [10], pp. 213-222.
18. G. W. Sabot. The Paralation Model: Architecture-Independent Parallel Programming. The

MIT Press, 1988.
19. Thinking Machines Corporation. C* Language Reference Manual, 1991.
20. E Wadler. Comprehending monads. Math. Struct. in Comp. Sci., 2:461-493, 1992.

