
CMSC 22600
Autumn 2016

Compilers for Computer Languages Handout 2
October 19, 2016

The SOOL Type System

1 Introduction

This document presents the formal specification of the typing rules for SOOL. It is a companion to
the Project 2 description, which describes the project of implementing this formal specification in a
type checker.

2 SOOL abstract syntax

The SOOL type system is defined in terms of an abstract syntax, which elides many of the syntactic
details found in the concrete syntax. We start by defining conventions for the various kinds of
identifiers in SOOL.

a ∈ VAR Variable identifiers
v ∈ MEMBVAR Class variable identifiers
f ∈ MEMBFUN Class/interface function identifiers
x ∈ MEMB = MEMBVAR ∪MEMBFUN Class member identifiers
C ∈ CLS ∪ {obj} Class types
I ∈ IFC ∪ {objI} Interface types
n ∈ INT Integer constants
r ∈ STR String constants

Note that we add the distinguished identifiers obj and objI to the sets of class and interface iden-
tifiers (respectively). Adding these special identifiers allows us to simplify the abstract syntax and
typing rules to only deal with class/interface declarations that extend classes/interfaces. The abstract
syntax of SOOL is given in Figure 1.

We assume that the abstract syntax satisfies certain syntactic restrictions.

• Class and interface names in a program are distinct.

• A declaration of subclass class C that is derived from a class B

class C (· · ·) extends B (· · ·) { · · · }

can only appear after the declaration of B. This restriction ensures that the class hierarchy will
be acyclic. Also note that this restriction does not prevent class B from referencing class C.

• A declaration of an interface J that extends an interface I

p ::= d

d ::= class C ′(a1 : τ1, . . . , an : τn) extends C(e1, . . . , ek) { vd ; fd }
| interface I ′ extends I { fs }
| d1 d2

vd ::= var v : τ = e
| vd1 vd2

fd ::= meth f (a1 : τ1, . . . , an : τn)→ θ { s }
| overridemeth f (a1 : τ1, . . . , an : τn)→ θ { s }
| fd1 fd2

fs ::= meth f (τ1, . . . , τn)→ θ
| fs1 fs2

s ::= s1 ; s2
| var x= e
| while e { s }
| if e then { s1 } else { s2 }
| return e
| return
| m := e2
| x := e
| m(e1, . . . , en)

m ::= e.x
| e!x

e ::= (e1 � e2)
| m
| e?x
| e!
| m(e1, . . . , en)
| e?x(e1, . . . , en)
| C(e1, . . . , en)
| a
| n | r | true | false
| nil T

Figure 1: SOOL abstract syntax

2

interface J extends I { · · · }

can only appear after the declaration of I.

• The parameter names of a class and of a member-function are distinct.

• The member-variable names of a class are distinct.

• The member-function names of a class or interface definition are distinct.

• Integer literals are restricted to the range −262..262 − 1 (i.e., representable as a 63-bit 2’s-
complement integer).

• Functions with non-void return type must have a return statement on every possible exe-
cution path.1

3 Definitions

This document uses a fair number of definitions and notational conventions. We describe these in
this section.

3.1 Semantic objects

We use the following notation for sets of member variables:

V ∈ 2MEMBVAR Sets of variable identifiers
F ∈ 2MEMBFUN Sets of function identifiers

The following grammar defines the abstract syntax of the various kinds of “types” that we use
to define the static semantics of SOOL:

ι ::= bool | int | string Primitive types
T ::= C | I | ι Type constructors
τ ::= T | T? Type expressions (TYP)
θ ::= τ | void Return types
σ ::= (τ1, . . . , τn)→ θ Member-function signature (SPEC)
µ ::= TYP ∪ SPEC Class/interface member type
Σ ::= (τ1, . . . , τn){|C; v : τv

v∈V ; f : σf
f∈F |} Class signature (CLSSIG)

Υ ::= {| f : σf
f∈F |} Interface signature (IFCSIG)

Because SOOL does not have type variables or type renaming, equality between types is purely
structural; i.e., two types are equal if they are syntactically equal. We write ` τ = τ ′ (likewise,
` σ = σ′, etc.) to assert that τ and τ ′ are equal.2

The class signature
(τ1, . . . , τn){|C; v : τv

v∈V ; f : σf
f∈F |}

1This condition was omitted from the original problem description, so you are not responsible for checking this
property in Project 2.

2If you see “=” used without the turnstile, then it is a definition.

3

describes a class that is derived from class C. The τ1, . . . , τn are the types of the class parameters;
V is the set of member-variable names in the class (including inherited variables), and F is the set
of member functions in the class (including inherited functions). We use the notation v : τv

v∈V to
mean that for each class variable v ∈ V , the variable v has the type τv. We use similar notation for
the member functions of a class or interface, and we use similar notation to describe the typing of a
sequence of argument expressions in the rules below.

Environments are finite maps from identifiers to types. We write {x 7→ y} to denote the single-
ton finite map that maps x to y. If A is a finite map, then we write dom(A) for the domain of A and
we write A(x) for the application of A to x. If A and B are finite maps, then we write A±B for the
extension of A by B, which denotes a finite map with the following behavior

(A±B)(x) =

{
B(x) if x ∈ dom(B)
A(x) otherwise

We define three kinds of environments for classes, interfaces, and local variables. We also define
notation for the triple of all three environments.

CE ∈ CENV = CLS
fin→ CLSSIG Class environments

IE ∈ IENV = IFC
fin→ IFCSIG Interface environments

VE ∈ VENV = VAR
fin→ TYP Variable environments

E = 〈CE , IE ,VE 〉 ∈ ENV = CENV × IENV × VENV Environments

If E = 〈CE , IE ,VE 〉, then the notation (CE of E) denotes CE , and similarly for the IE and VE
components of E. We will also write E±A for the extension of one of the components of E, where
the context makes it clear which component is involved (the other components are not extended).

3.2 Additonal notation

To simplify the rules, we define the notation τ? as follows:

τ? =

{
τ if τ is T? (for some T)
T? if τ is T (for some T)

(i.e., T?? = T?).

In order to specify the typing rules for class and interface bodies, we need to collect together
member function and member variable signatures. We use the following notation for these collec-
tions:

F̂ =
{
f : σf

f∈F
}

V̂ =
{
v : τv

v∈V}

F̂ and V̂ are finite maps (or environments) with domainsF and V respectively. We also use F̂ and V̂
to represent the members of a class signature (Σ = (τ1, . . . , τn){|C; V̂; F̂ |}) or interface signature
(Υ = {| F̂ |}). We define the methods of a class (or interface) with respect to an environment as

4

E ` p ok Program typing (see Section 5.1)
E ` d : E′ Declaration typing (see Section 5.2)

E,C ` vd : V̂ Member-variable-declaration typing (see Section 5.3)
E,C ′, C ` fd : F̂ Member-function-declaration typing (see Section 5.4)

E ` fs : F̂ Member-function-specification typing (see Section 5.6)
E,C, θ ` s : E Statement typing (see Section 5.6)
E,C ` m : µ Required member selection (see Section 5.7)
E,C, T ` x : µ Member typing (see Section 5.8)
E,C ` e � τ Expression subtyping (see Section 5.9)
E,C ` e : τ Expression typing (see Section 5.10)

Figure 2: Typing judgments for SOOL

follows:

FunsOfE(obj) = ∅
FunsOfE(C) = F̂ where C ∈ dom(CE of E) and

(CE of E)(C) = (τ1, . . . , τn){|C ′; V̂; F̂ |}

FunsOfE(objI) = ∅
FunsOfE(I) = F̂ where I ∈ dom(IE of E) and(IE of E)(I) = {| F̂ |}

We also define the parameter signature of a class with respect to an environment as follows:

ParamsOfE(obj) = empty

ParamsOfE(C) = τ1, . . . , τn where C ∈ dom(CE of E) and
(CE of E)(C) = (τ1, . . . , τn){|C ′; V̂; F̂ |}

For primitive types ι ∈ {bool, int, string}, we write InterfaceOf(ι) to denote the correspond-
ing interface type as defined in Section 3.3 of the Project Overview.

3.3 Judgment forms

The SOOL type system is defined by a collection of various judgement forms, which are summarized
in Figure 2. The general form of a judgment is “context ` term : property”, which can be read as
“term has property in context .”

4 Judgments about types

Before presenting the typing rules for the abstract syntax, we define the following judgments about
types:

E ` τ ok The type τ is well-formed
CE ` C ′ l C Class C ′ inherits from C
E ` C ≺ I Class C implements interface I
E ` τ ′ � τ Type τ ′ is a subtype of τ

5

These have a similar form to the typing judgments for terms that are shown in Figure 2, but they
describe properties of types. As above, the environment on the left-hand-side of the turnstile (“`”)
provides the context for making the judgment. These judgments are defined by inference rules in
the remainder of this section.

4.1 Well-formedness of types E ` τ ok

Informally, a type is well formed with respect to an environment E if the class and interface names
in the type are defined in the environment. The following rules make this definition precise. The
primitive types are well formed.

E ` ι ok
Class types are well formed if they are in the class environment:

C ∈ dom(CE of E)

E ` C ok

Similarly for interface types:
I ∈ dom(IE of E)

E ` I ok

Lastly, option types are well formed if their type constructor is well formed.

E ` T ok

E ` T? ok

We lift the well-formedness judgement to return types (θ) and member-function signatures (σ) in
the obvious way.

4.2 The inherits relation CE ` C ′ l C

Classes inherit from their immediate superclass:

C ′ ∈ dom(CE) CE (C ′) = (τ1, . . . , τn){|C; v : τv
v∈V ; f : σf

f∈F |}
CE ` C ′ l C

and the inherits relation is transitive

CE ` C ′ l C ′′ CE ` C ′′ l C

CE ` C ′ l C

4.3 The implements relation E ` C ≺ I

A class C implements an interface I if it provides all of the member functions declared in the
interface at the same types.

C ∈ dom(CE of E) (CE of E)(C) = (τ1, . . . , τn){|C; V̂; F̂C |}
I ∈ dom(IE of E) (IE of E)(I) = {|F̂I |}

dom(F̂I) ⊆ dom(F̂C) ` F̂I(f) = F̂C(f)
f∈dom(F̂I)

E ` C ≺ I

6

4.4 The subtyping relation E ` τ ′ � τ

A well-formed type τ is always a subtype of itself.

E ` τ ok

E ` τ � τ

and a well-formed type is always a subtype of its option type.

E ` Tu ok

E ` T � T?

Primitive types are subtypes of the interfaces that they implement.

I = InterfaceOf(ι)

E ` ι � I

Classes are subtypes of their super-classes.

(CE of E) ` C ′ l C

E ` C ′ � C

Classes are also subtypes of the interfaces that they implement.

(CE of E) ` C ≺ I
E ` C � I

Extending an interface with additional member-function specifications creates a subtype.

FunsOfE(I ′) = F̂ ′ FunsOfE(I) = F̂ dom(F̂) ⊆ dom(F̂ ′) ` F̂ ′(f) = F̂ (f)
f∈dom(F̂)

E ` I ′ � I

Note that the two interfaces agree on the types of their common member functions; this form of
subtyping is called width subtyping, since it does not involve subtyping on the types of the member
functions. Lastly, the subtyping relation is transitive

E ` τ ′ � τ ′′ E ` τ ′′ � τ
E ` τ ′ � τ

5 Typing rules

The judgments are defined in a syntax directed set of typing rules, which means that each syntactic
form has an associated typing rule.

5.1 Program typing E ` p ok

The typing rule for programs is deceptively simple.

E0 t E E0 ∪ E ` d : E

E0 ` d ok

The appearance of E on both the left-hand and right-hand sides of the turnstile may seem strange,
but it accounts for the fact that declarations in a SOOL program are allowed to be mutually recur-
sive. The environment E0 is the SOOL Initial Basis extended with bindings for obj and objI (see
Section 6).

7

5.2 Declaration typing E ` d : E ′

The typing rule for class declarations is the most complicated rule in the system, since there are
many pieces that have to be specified. We need to check that the superclass is defined and that the
superclass-initialization arguments have the correct type. We also need to derive the types of the
member declarations and check that they do not conflict with the superclass’s members.

E ` τi ok1≤i≤n C ∈ dom(CE of E) (CE of E)(C) = (τ ′1, . . . , τ
′
k){|C; V̂; F̂ |}

E′ = E±{ai 7→ τi|1 ≤ i ≤ n} E′ ` ei � τ ′i
1≤i≤k

E′ ` vd : V̂ ′
E±{self 7→ C ′}, C ` fd : F̂ ′

dom(V̂) t dom(V̂ ′) dom(F̂) t dom(F̂ ′) Σ = (τ1, . . . , τn){|C; V̂ ∪ V̂ ′; F̂ ∪ F̂ ′ |}
E ` class C ′(a1 : τ1, . . . , an : τn) extends C(e1, . . . , ek) { vd ; fd } : 〈{C ′ 7→ Σ}, ∅, ∅〉

The typing rule for interface declarations is simpler, since we only need check the member-function
specifications and ensure that the declaration does not redefine functions from the interface that it
extends.

I ∈ dom(IE of E) (IE of E)(I) = {| F̂ |} E ` fs : F̂ ′
dom(F̂) t dom(F̂ ′) Υ = {| F̂ ∪ F̂ ′ |}

E ` interface I ′ extends I { fs } : 〈∅, {I ′ 7→ Υ}, ∅〉
Sequences of declarations must define disjoint environments (note the variable environments will
always be empty). We then join the environments.

E ` d1 : 〈CE 1, IE 1, ∅〉
E ` d2 : 〈CE 2, IE 2, ∅〉 dom(CE 1) t dom(CE 2) dom(IE 1) t dom(IE 2)

E ` d1 d2 : 〈CE 1 ∪ CE 2, IE 1 ∪ IE 2, ∅〉

5.3 Member-variable-declaration typing E,C ` vd : V̂

A member-variable definition must be checked for well-formedness of the declared type τ and that
the right-hand-side expression is a subtype of τ .

E ` τv ok E,C ` e � τv
E,C ` var v : τv = e :

{
v : τv

v∈{v}
}

The environments from sequences of variable declarations must be disjoint and are combined.

E,C ` vd1 : V̂1 E,C ` vd2 : V̂2 dom(V̂1) t dom(V̂2)

E,C ` vd1 vd2 : V̂1 ∪ V̂2

5.4 Member-function-declaration typing E,C ′, C ` fd : F̂

The rules for typing member-function declarations use a context that includes the environment E,
the enclosing class C ′, and the superclass of the enclosing class C (which may be obj).

For a non-overriding function definition, we check that the function was not defined by its
superclass and that the function’s body type checks.

f 6∈ dom(FunsOfE(C)) E±{ai 7→ τi|1 ≤ i ≤ n}, C ′, θ ` s : E′ σf = (τ1, . . . , τn)→ θ

E,C ′, C `meth f (a1 : τ1, . . . , an : τn)→ θ { s } :
{
f : σf

f∈{f}
}

8

For overriding definitions, we need to check that the superclass defines the function and that the
types agree. The resulting environment is empty, since the function’s signature is already inherited
from the superclass.

f ∈ dom(FunsOfE(C)) FunsOfE(C)(f) = σf ` σf = (τ1, . . . , τn)→ θ
E±{ai 7→ τi|1 ≤ i ≤ n}, C ′, θ ` s : E′

E,C ′, C ` overridemeth f (a1 : τ1, . . . , an : τn)→ θ { s } : {}

The environments from sequences of function declarations must be disjoint and are combined.

E,C ′, C ` fd1 : F̂1 E,C ′, C ` fd2 : F̂2 dom(F̂1) t dom(F̂2)

E,C ′, C ` fd1 fd2 : F̂1 ∪ F̂2

5.5 Member-function-specification typing E ` fs : F̂

The rule for typing a member-function specification requires that the function signature σf be well
formed.

σf = (τ1, . . . , τn)→ θ E ` σf ok

E `meth f (τ1, . . . , τn)→ θ :
{
f : σf

f∈{f}
}

The environments from sequences of function specifications must be disjoint and are combined.

E ` fs1 : F̂1 E ` fs2 : F̂2 dom(F̂1) t dom(F̂2)

E ` fs1 fs2 : F̂1 ∪ F̂2

5.6 Statement typing E,C, θ ` s : E

Statements are type checked in a context that includes the enclosing class C and the declared return
type θ of the enclosing method. The rules for typing statements yield an environment enriched by
any local variable declarations.

The rule for statements in sequence uses the environment produced by the first statement as the
environment for the second one.

E,C, θ ` s1 : E1 E1, C, θ ` s2 : E2

E,C, θ ` s1 ; s2 : E2

The rule for variable declarations extends the environment with a binding for the variable.

E,C ` e : τ

E,C, θ ` var x= e : E±{x 7→ τ}

The expression of a while loop must have type bool. Note that the variables declared in the body
of the loop are not visible outside of the loop.

E,C ` e : bool E,C, θ ` s : E′

E,C, θ ` while e { s } : E

Conditional statements also require a boolean predicate.

E,C ` e : bool E,C, θ ` s1 : E1 E,C, θ ` s2 : E2

E,C, θ ` if e then { s1 } else { s2 } : E

9

A return statement without an argument expression is valid if the enclosing method’s return type
is void.

E,C,void ` return : E

A return statement with an argument expression is valid if the type if e is a subtype of the enclosing
method’s return type.

E,C ` e � τ
E,C, τ ` return e : E

Assigning to a member variable requires that the right-hand-side expression e be a subtype of the
left-hand-side member variable.

E,C ` m : τ E,C ` e � τ
E,C, θ ` m := e : E

x ∈ dom(VE of E) (VE of E)(x) = τ E ` e � τ
E,C, θ ` x := e : E

E,C ` m : (τ1, . . . , τn)→ void E,C ` ei � τi1≤i≤n

E,C, θ ` m(e1, . . . , en) : E

5.7 Required member selection E,C ` m : µ

Selecting a member requires that the expression have a subtype of some type constructor T , such
that T has the member x with type µ (we use subtyping here in case e has a primitive type).

E,C ` e � T E,C, T ` x : µ

E,C ` e.x : µ

We have a similar rule for when the expression has an optional type and we require that it be non-nil.

E ` e � T? E,C, T ` x : µ

E,C ` e!x : µ

5.8 Member typing E,C, T ` x : µ

The member variables of a class are only visible in its member functions and in the member func-
tions of its subclasses. This restriction is captured in the following definition:

VarsOfE,C′(C) =

{
V̂ if C ′ = C or E ` C ′ l C
∅ otherwise

where C ∈ dom(CE of E) and

(CE of E)(C) = (τ1, . . . , τn){|C ′′; V̂; F̂ |}

We use this definition in the following rule for typing member-variable references:

v ∈ dom(VarsOfE,C′(C)) τv = VarsOfE,C′(C)(v)

E,C ′, C ` v : τv

Class functions, on the other hand, are always visible:

f ∈ dom(FunsOfE(T)) σf = FunsOfE(T)(f)

E,C, T ` f : σf

10

5.9 Expression subtyping E,C ` e � τ

The “expression subtyping” judgment is syntactic sugar for the common case where we allow an
expression to be viewed as having a super type of its type.

E,C ` e : τ ′ E ` τ ′ � τ
E,C ` e � τ

5.10 Expression typing E,C ` e : τ

The types of the primitive infix operators (other than the equality tests) are given in Section 6. These
operators are defined on the primitive types, as reflected in the following rule:

� : (ι1, ι2)→ ι3 E,C ` e1 : ι1 E,C ` e2 : ι2

E,C ` (e1 � e2) : ι3

The arguments to an equality operator can have any type as long as one is a subtype of the other.

� ∈ {==,!=} E,C ` e1 : τ1 E,C ` e2 : τ2 either E ` τ1 � τ2 or E ` τ2 � τ1
E,C ` (e1 � e2) : bool

The rule for accessing a member variable just lifts the member typing rule for variables to expres-
sions.

E,C ` m : τ

E,C ` m : τ

The rule for accessing a member variable from an optional object propagates the option annotation.
to expressions (recall that if τ is itself an optional type, then τ? = τ).

E,C ` e : T? E,C, T ` x : τ

E,C ` e?x : τ?

The rule for requiring a non-optional value from an expression e strips off the option annotation
from the expression’s type.

E,C ` e : T?

E,C ` e! : T

Invoking an object’s member function (or method) requires checking the member-function access
and then checking that the argument expressions are subtypes of the function’s parameter types.

E,C ` m : (τ1, . . . , τn)→ τ E,C ` ei � τi1≤i≤n

E,C ` m(e1, . . . , en) : τ

Invoking a member function for an optional object is similar, but we also propagate the option
annotation.

E,C ` e : T? E,C, T ` x : (τ1, . . . , τn)→ τ E,C ` ei � τi1≤i≤n

E,C ` e?x(e1, . . . , en) : τ?

The rule for constructing new objects of a class C

C ′ ∈ dom(CE of E) τ1, . . . , τn = ParamsOfE(C ′) E,C ` ei � τi1≤i≤n

E,C ` C ′(e1, . . . , en) : C ′

11

The rule for local variable reference checks that the variable is defined in the variable environment.

x ∈ dom(VE of E) (VE of E)(x) = τ

E,C ` x : τ

Literals are given their corresponding primitive types.

E,C ` true : bool E,C ` false : bool E,C ` n : int E,C ` r : string

The nil expression has type T? for a well-formed type constant T .

E ` T ok

E,C ` nil T : T?

6 The SOOL Basis

The SOOL Basis environment was described in Section 3 of the Project Overview document; here
we formalize that discussion using the notation of the formal type system.

The initial basis used to give a typing to programs in Section 5.1 is defined to be

E0 = 〈CE 0, IE 0,VE 0〉

where the individual environments are defined below. The initial class environment CE 0 is empty
except for a binding for obj:

CE 0 = {obj 7→ (){|obj; ∅; ∅ |}}

The initial interface environment defines bindings for objI and the predefined interfaces of the
basis.

IE 0 =



objI 7→ {| ∅ |}
toStringI 7→ ΥtoStringI,
boolI 7→ ΥboolI,
intI 7→ ΥintI,
stringI 7→ ΥstringI,
systemI 7→ ΥsystemI



12

where the predefined interface signatures are as follows:

ΥtoStringI = {|toString : ()→ string |}

ΥboolI =

{∣∣∣∣ toString : ()→ string
not : ()→ bool

∣∣∣∣}

ΥintI =

{∣∣∣∣ toString : ()→ string
char : ()→ string

∣∣∣∣}

ΥstringI =



∣∣∣∣∣∣∣∣∣∣
toString : ()→ string
length : ()→ int
substring : (int, int)→ string
charAt : (int)→ int
toInt : ()→ int?

∣∣∣∣∣∣∣∣∣∣


ΥsystemI =


∣∣∣∣∣∣∣∣
print : (toStringI)→ void
input : ()→ string?
exit : ()→ void
fail : (string)→ void

∣∣∣∣∣∣∣∣


Lastly, the initial variable environment contains just the definition for the global system variable

VE 0 = {system 7→ systemI}

We also give types for the builtin infix operators.

|| : (bool,bool)→ bool

&& : (bool,bool)→ bool

< : (int, int)→ bool

<= : (int, int)→ bool

@ : (string, string)→ string

+ : (int, int)→ int

- : (int, int)→ int

* : (int, int)→ int

/ : (int, int)→ int

We treat unary negation “- e” as “0- e” for type checking purposes.

7 Document history

November 3, 2016 Added missing requirement for return statements in non-void functions (note,
this requirement was added for completeness, you do not have to implement it).

November 1, 2016 Fix typos.

October 23, 2016 Make the typing rule for equality a bit more flexible.

October 20, 2016 Fix typos; use r for string constants (instead of s, which is used for statements).

October 19, 2016 Original version.

13

