
CMSC 22600
Autumn 2016

Compilers for Computer Languages Project 1
October 6, 2016

SOOL parser and scanner
Due: October 21, 2016

1 Introduction

Your first assignment is to implement a scanner and a parser for SOOL, which will convert an input
stream of characters into a parse tree. You will use the ML-ULex scanner generator and ML-Antlr
parser generator (collectively the ML Language Processing Tools) for this assignment. These tools
documented in the ML-LPT Manual, which is linked to on the course web site.

2 Requirements

We will seed a directory, called proj1, in your phoenixforge repository. This directory will
contain five sub-directories:

bin — holds the soolc.sh script for running the compiler.

common — common utility code that will be used across the project

driver — main program for connecting phases and running the compiler

parse-tree — the representation of the parse tree

parser — the scanner and parser

as well as a Makefile.

Your task is to complete the sool.lex and sool.grm files that are located in the parser
directory so as to implement the grammar of SOOL described below.

We recommend that you proceed by first writing the parser specification without actions and get
that to pass the ML-Antlr compiler. Once you have done that step, you can write and test the lexer
(the lexer depends on the token datatype that is generated by ML-Antlr). The last step will then be
to add actions to the ML-Antlr specification that build the parse tree.

3 The SOOL scanner

You will use ML-ULex to implement the scanner for SOOL. Your scanner should handle the lexical
properties of the language as described in Section 5.1.

4 The SOOL parser

ML-Antlr utilizes a parsing algorithm that integrates automatic error repair. Hence, your parser
specification need not explicitly support error reporting. ML-Antlr does support declarations for
improving error recovery, which you are welcome to include in your specification. The automatic
error repair mechanisms require that semantic actions be free of significant side effects, because er-
ror repair may require executing a production’s semantic action multiple times. All of the functions
in the ParseTree structure are pure; thus, they may be freely used in semantic actions.

In order to support error reporting in the type-checker (to be implemented in Project 2), the
parse tree must be annotated with position information. Therefore, each node in the parse tree is
constructed with a source span that pairs the left and right source positions of the node. For example,
you might have the following rule for matching a constant as an AtomicExp in your grammar:

AtomicExp : NUMBER
=> (PT.ExpMark{span = NUMBER_SPAN, tree = PT.IntExp NUMBER});

Source positions and spans of terminals are automatically provided by the scanner. Consult the ML-
LPT manual for information for more information about source positions and accessing position
information in semantic actions.1

5 The collected syntax of SOOL

5.1 Lexical issues

There are four classes of tokens in SOOL:

1. identifiers: a, b, toString, y23, X, Foo, etc.

2. delimiters and operators: (,), =, <=, +, etc.

3. numbers: 0, 42, etc.

4. strings: "hello world", "some\ntext", etc.

Tokens can be separated by whitespace and/or comments.

Identifiers in SOOL can be any string of letters, digits, and underscores, beginning with a letter.
Identifiers are case-sensitive (e.g., foo is different from Foo). The following identifiers are reserved
as keywords:

bool class else extends false if
int interface meth nil override return
self string true var void while

The delimiters and operators of SOOL are the following:

() { } && || = == != <=
< @ + - * / := . ! ?
, ; : ->

1There is a link to the ML-LPT manual on the class website.

2

Numbers in SOOL are represented as sequences of decimal digits. Negative numbers are using
the unary negation operator (“-”); the minus sign is not part of the literal token.

String literals are delimited by matching double quotes and can contain spaces (ASCII code 32)
and any unescaped graphical character except “\” (ASCII code 92) or “"” (ASCII code 34). In
addition, the following C-like escape sequences are permitted:

\n — newline (ASCII code 10)
\r — carriage return (ASCII code 13)
\t — horizontal tab (ASCII code 8)
\\ — backslash
\" — quotation mark

A character in a string literal may also be specified by its numerical value using the escape sequence
‘\ddd,’ where ddd is a sequence of three decimal digits. Strings in SOOL may contain any 8-bit
value other than zero; thus ‘\000’ is not a legal escape code.

Comments in SOOL are either end-of-line, which start with “//” and extend until the next new-
line character (or end-of file), or block comments, which start with “/*” and are terminated with a
matching “*/.” Note that block comments do not nest and that comments cannot start inside a string
literal.

Whitespace is any non-empty sequence of spaces (ASCII code 32), horizontal or vertical tabs,
form feeds, newlines, or carriage returns. Any other non-printable character is treated as an error.

5.2 Grammar

The collected syntax of SOOL given below using an extended-BNF format. Literal symbols, such as
keywords and punctuation, are written in a bold fixed-width font, other terminal symbols
are written in roman font, and non-terminal symbols are written in italic font. We use the following
terminal symbols in the grammar:

Terminal Lexical class Description
tyid identifier class or interface name
varid identifier local-variable, field, or method name
num number integer literal
str string string literal

Note that tyid and varid have the same lexical specification (i.e., the are both identifiers). The col-
lected syntax of SOOL is presented in Figures 1 (declarations) and 2 (statements and expressions).
We use parentheses for grouping, when necessary, and superscript “∗” for zero-or-more items, su-
perscript “+” for one-or-more items, and superscript “opt” for zero-or-one items.

5.3 Syntactic conventions

The syntax of expressions in Figure 2 is ambiguous, but we resolve the ambiguities by specifying
the precedence and associativity of operators.2 Expression forms are grouped into seven precedence
levels from lowest to highest as follows:

2You will also need to do some factoring of the grammar to make it satisfy the LL(k) requirements of ML-Antlr.

3

Prog
::= TopDcl+

TopDcl
::= class tyid (Paramsopt) (extends tyid (Argsopt))opt { VarDcl∗ MethDcl∗ }
| interface tyid (extends tyid)opt { MethSpc∗ }

Params
::= varid : Type (, varid : Type)∗

Type
::= TypeCon
| TypeCon ?

TypeCon
::= tyid
| int
| bool
| string

VarDcl
::= var varid : Type = Exp

MethDcl
::= overrideopt meth varid (Paramsopt) -> ReturnType Block

MethSpc
::= meth varid ((Type (, Type)∗)opt) -> ReturnType

ReturnType
::= Type
| void

Figure 1: SOOL grammar: declarations

4

Block
::= { Stm∗ }

Stm
::= var varid := Exp ;
| while Exp Block
| if Exp Block (else if Exp Block)∗ (else Block)opt

| return Expopt ;
| Exp := Exp ;
| ReqMember (Argsopt) ;

ReqMember
::= Exp . varid
| Exp ! varid

Args
::= Exp (, Exp)∗

Exp
::= Exp || Exp
| Exp && Exp
| Exp < Exp
| Exp <= Exp
| Exp == Exp
| Exp != Exp
| Exp @ Exp
| Exp + Exp
| Exp - Exp
| Exp * Exp
| Exp / Exp
| - Exp
| tyid (Argsopt)
| ReqMember ((Argsopt))opt

| Exp ? varid ((Argsopt))opt

| Exp !
| self
| varid
| num
| str
| true
| false
| nil TypeCon
| (Exp)

Figure 2: SOOL grammar: statements and expressions

5

• conditional operators: || and &&

• relational operators: ==, !=, <, and <=

• string-concatenation operator: @

• addition operators: + and -

• multiplication operators: * and /

• unary negation: -

• field/method selection: ., ?, and !

And all binary operators are left associative, but unary negation is right associative.

The type checker will restrict the left-hand-side of an assignment to be a specification of either
a local variable (varid) or an expression that denotes an object’s member variable. If you wish, you
can enforce this restriction (or a weaker form) in your grammar. The more restrictive syntactic rules
for the left-hand-side of an assignment (LHSExp) are as follows:

LHSExp
::= varid
| LHSObj (Selector Member)∗ Selector varid

LHSObj
::= varid
| self
| tyid (Argsopt)

Selector
::= .
| !

Member
::= varid ((Argsopt))opt

This approach leads to a more complicated grammar, but rules out certain nonsensical assignments,
such as “(1+2):=3;”, earlier in the compilation process. If you follow this approach, you should
also apply it to the syntax of method-call statements and handle assignments and calls with an
integrated set of productions.

6 Submission

We will collect the projects at 11pm on Friday October 21 from the SVN repositories, so make
sure that you have committed your final version before then.

6

Important note: You are expected to submit code that compiles and that is
well documented. Remember that points for project code are assigned 30%
for coding style (documentation, choice of variable names, and program
structure), and 70% for correctness. Code that does not compile will not
receive any points for correctness.

7 Document history

October 16, 2016 Added discussion about an alternative syntax for the left-hand-side of assign-
ments.

October 13, 2016 Fix bug in grammar; the rule for VarDcl was missing the initialization expres-
sion.

October 13, 2016 Fix bug in grammar; the rule for return statements was missing a terminating
semicolon.

October 9, 2016 Add type constructor to nil expression to simplify Project 2.

October 7, 2016 Added some missing details about string literals.

October 6, 2016 Original version.

7

