Lecture 2: Regular Expression

Instructor: Ketan Mulmuley
Scriber: Yuan Li

January 8, 2015

In the last lecture, we proved that DFA, NFA, and NFA with e-moves are
equivalent. Recall that a language L C ¥* is called regular if L = L(M) for
some DFA M (or equivalently NFA, or NFA with e-moves).

In this lecture, we will give a syntactic characterization of regular lan-
guages.

1 Regular Expression

For example, R = (0 + 1)*00(0 4+ 1)* is a regular expression representing all
binary strings containing two consecutive zeros. Here, + means or, * means
repetition any number of times (including zero times).

Formally, regular expression is defined by the following rules.

¢ is a regular expression, which denotes {} C ¥*.
e ¢ is a regular expression, which denotes {€}.

For each a € ¥, a is a regular expression, which denotes {a}.

If r and s are regular expressions, r + s, rs, r* are also regular expres-
sions. If r, s denote R, S C Y* respectively, then r + s denotes R U S,
rs denotes RS = {uv : u € R,v € S}, and r* denotes R* = |J,», R,
where R* = {¢} and R = RR---R. -
7 times
The next theorem says a language is regular if and only if it can be
described by regular expression.



Theorem 1.1. Regular expression is equivalent to NFA with e-moves (and
thus equivalent to DFA, NFA).

Proof. (Regular expression = NFA with e-moves) We will prove, if L is
accepted by a regular expression, then there exists an NFA with e-moves M
such that L = L(M).

Basis: if r = (), let M be an NFA with only initial state (no final state);
if r =¢, let M be an NFA with one state, which is both the initial state and
final state. If r = a, let M be an NFA with one initial state, and one final
state, connected by an arrow a.

For induction step, let r and s are two regular expressions equivalent to
M, M respectively, and assume both r and s have at most one final state.
Expression r + s is equivalent to M defined as follows.

N

© w O

—

&

e O

—

Figure 1: e-NFA accepting expression r + s

Expression rs is equivalent to M defined as follows.

O w O ® » Or=0

Figure 2: e-NFA accepting expression rs

Expression r* is equivalent to M defined as follows.

Since in the last class, we see that NFA with e-moves is equivalent to
DFA. For the other direction, we need to prove DFA = regular expression,



Figure 3: e-NFA accepting expression r*

that is, given any DFA M there exists a regular expression r such that L(M)
is denoted by 7.

The idea is to define recursively like dynamic programming. Let M =
(Q,%,0,q, F C Q), where Q = {q1,92,---,q.}- We will recursively define
regular expression

R 1<i,j,k<n

and 7, j could be greater than k. Let L(R};) be the set of all strings in
Y. that take M from state i to state j without going through (enter
and leave) any state numbered higher than k.

By definition, Rj; is the set of all strings that take M from state ¢ to
state j. Thus, L(M) = (J,cp L(RY;). Let R = @, Ry;, and we have
L(R) = L(M).

Do induction on k. Let

JEF JEF

Rl = Ri + ngl(R’,j,gl)*Rﬁ‘;l.

In words, consider a path from state ¢ to state j without going through
any state numbered higher than k. There are two possibilities — either the
path does not going through any state numbered higher than £ — 1, or the
path first goes from i to k (without going through any state numbered higher
than k—1), then loops at state k (without going through any state numbered
higher than k£ — 1), and finally goes from state k to state j (without going
through any state numbered higher than k£ — 1).



For the induction basis, i.e., k = 0, let

RO— a; + ...+ as, lfl#j,
" ay+...+as+e€ ifi=j,

where aq, ..., a, are the labels of the arrows from 7 to j. n

Note that in above construction, the length of the regular expression could
be exponential in n.

2 Two-way Finite Automaton

A two-way finite automaton is a finite automaton where its head can move
in both directions. It accepts the input string if it moves its head to the right
end and enter a final state at the same time.

Formally, a two-way deterministic finite automaton M = (Q, X, 0, qo, F),
where § : @ x X — @ x {L, R}.

In order to formally define the language accepted by M, let us define
instantaneous description (ID) first. An instantaneous description is a snap-
shot of runtime DFA. An ID of a two-way finite automaton is a string wqz,
where w, g € X* and ¢ € @), which means the current state is ¢, and the head
is on the first symbol of z.

Define a relation +j;, where I +j; J means that J is the next ID of I.
Specifically, if I = ay---a;_1qa;---ay, i > 1, then

o J=ai -apair - ay if 6(q,a;) = (p, R).

o J=uay - -a; opa;_1---ay,if 6(q,a;) = (p, L).



Figure 4: Instantaneous Description of 2-DFA

If i =1 and §(q,a1) = (p, L), then the string is rejected.

Let 7, denote the reflexive transitive closure of >, that is, I —73, J
if J can be reached from I by applying +,; any number of times (including
zero times). Let w € ¥* be the input string, then

L(M) ={w € X" : gqow >}, wp for some p € F'}.

Is two-way DFA strictly stronger than DFA? The answer is not so obvious.
In the next lecture, we will prove that two-way DFA and DFA are in fact
equivalent.



