In the last lecture, we proved that DFA, NFA, and NFA with ϵ-moves are equivalent. Recall that a language $L \subseteq \Sigma^*$ is called regular if $L = L(M)$ for some DFA M (or equivalently NFA, or NFA with ϵ-moves).

In this lecture, we will give a syntactic characterization of regular languages.

1 Regular Expression

For example, $R = (0 + 1)^*00(0 + 1)^*$ is a regular expression representing all binary strings containing two consecutive zeros. Here, $+$ means or, \ast means repetition any number of times (including zero times).

Formally, regular expression is defined by the following rules.

- ϕ is a regular expression, which denotes $\{\} \subseteq \Sigma^*$.
- ϵ is a regular expression, which denotes $\{\epsilon\}$.
- For each $a \in \Sigma$, a is a regular expression, which denotes $\{a\}$.
- If r and s are regular expressions, $r + s$, rs, r^* are also regular expressions. If r, s denote $R, S \subseteq \Sigma^*$ respectively, then $r + s$ denotes $R \cup S$, rs denotes $RS = \{uv : u \in R, v \in S\}$, and r^* denotes $R^* = \bigcup_{i \geq 0} R^i$, where $R^0 = \{\epsilon\}$ and $R^i = RR \cdots R$, i times.

The next theorem says a language is regular if and only if it can be described by regular expression.
Theorem 1.1. Regular expression is equivalent to NFA with ϵ-moves (and thus equivalent to DFA, NFA).

Proof. (Regular expression \Rightarrow NFA with ϵ-moves) We will prove, if L is accepted by a regular expression, then there exists an NFA with ϵ-moves M such that $L = L(M)$.

- **Basis:** if $r = \emptyset$, let M be an NFA with only initial state (no final state); if $r = \epsilon$, let M be an NFA with one state, which is both the initial state and final state. If $r = a$, let M be an NFA with one initial state, and one final state, connected by an arrow a.

- For induction step, let r and s are two regular expressions equivalent to M_1, M_2 respectively, and assume both r and s have at most one final state. Expression $r + s$ is equivalent to M defined as follows.

![Diagram of ϵ-NFA accepting expression $r + s$](image1.png)

Expression rs is equivalent to M defined as follows.

![Diagram of ϵ-NFA accepting expression rs](image2.png)

Expression r^* is equivalent to M defined as follows.

Since in the last class, we see that NFA with ϵ-moves is equivalent to DFA. For the other direction, we need to prove DFA \Rightarrow regular expression,
that is, given any DFA M, there exists a regular expression r such that $L(M)$ is denoted by r.

The idea is to define recursively like dynamic programming. Let $M = (Q, \Sigma, \delta, q, F \subseteq Q)$, where $Q = \{q_1, q_2, \ldots, q_n\}$. We will recursively define regular expression

$$R^k_{ij}, 1 \leq i, j, k \leq n$$

and i, j could be greater than k. Let $L(R^k_{ij})$ be the set of all strings in Σ that take M from state i to state j without going through (enter and leave) any state numbered higher than k.

By definition, R^n_{ij} is the set of all strings that take M from state i to state j. Thus, $L(M) = \bigcup_{j \in F} L(R^n_{1j})$. Let $R = \bigoplus_{j \in F} R^n_{1j}$, and we have $L(R) = L(M)$.

Do induction on k. Let

$$R^k_{ij} = R^{k-1}_{ij} + R^{k-1}_{ik}(R^{k-1}_{kk})^* R^{k-1}_{kj}.$$

In words, consider a path from state i to state j without going through any state numbered higher than k. There are two possibilities — either the path does not going through any state numbered higher than $k - 1$, or the path first goes from i to k (without going through any state numbered higher than $k - 1$), then loops at state k (without going through any state numbered higher than $k - 1$), and finally goes from state k to state j (without going through any state numbered higher than $k - 1$).
For the induction basis, i.e., $k = 0$, let
\[
R^0_{ij} = \begin{cases} a_1 + \ldots + a_s, & \text{if } i \neq j, \\ a_1 + \ldots + a_s + \epsilon, & \text{if } i = j, \end{cases}
\]
where a_1, \ldots, a_s are the labels of the arrows from i to j.

Note that in above construction, the length of the regular expression could be exponential in n.

\section{Two-way Finite Automaton}

A two-way finite automaton is a finite automaton where its head can move in both directions. It accepts the input string if it moves its head to the right end and enter a final state at the same time.

Formally, a two-way deterministic finite automaton $M = (Q, \Sigma, \delta, q_0, F)$, where $\delta : Q \times \Sigma \to Q \times \{L, R\}$.

In order to formally define the language accepted by M, let us define \textit{instantaneous description} (ID) first. An instantaneous description is a snapshot of runtime DFA. An ID of a two-way finite automaton is a string wqx, where $w, q \in \Sigma^*$ and $q \in Q$, which means the current state is q, and the head is on the first symbol of x.

Define a relation \rightarrow_M, where $I \rightarrow_M J$ means that J is the next ID of I. Specifically, if $I = a_1 \cdots a_{i-1}qa_ia_i \cdots a_n$, $i > 1$, then

\begin{itemize}
 \item $J = a_1 \cdots a_ipa_{i+1} \cdots a_n$ if $\delta(q, a_i) = (p, R)$.
 \item $J = a_1 \cdots a_{i-2}pa_i a_{i-1} \cdots a_n$ if $\delta(q, a_i) = (p, L)$.
\end{itemize}
If $i = 1$ and $\delta(q, a_1) = (p, L)$, then the string is rejected.

Let \rightarrow^*_M denote the reflexive transitive closure of \rightarrow_M, that is, $I \rightarrow^*_M J$ if J can be reached from I by applying \rightarrow_M any number of times (including zero times). Let $w \in \Sigma^*$ be the input string, then

$$L(M) = \{w \in \Sigma^* : q_0w \rightarrow^*_M wp \text{ for some } p \in F\}.$$

Is two-way DFA strictly stronger than DFA? The answer is not so obvious. In the next lecture, we will prove that two-way DFA and DFA are in fact equivalent.