
Lecture 2: Regular Expression

Instructor: Ketan Mulmuley
Scriber: Yuan Li

January 8, 2015

In the last lecture, we proved that DFA, NFA, and NFA with ϵ-moves are
equivalent. Recall that a language L ⊆ Σ∗ is called regular if L = L(M) for
some DFA M (or equivalently NFA, or NFA with ϵ-moves).

In this lecture, we will give a syntactic characterization of regular lan-
guages.

1 Regular Expression

For example, R = (0 + 1)∗00(0 + 1)∗ is a regular expression representing all
binary strings containing two consecutive zeros. Here, + means or, ∗ means
repetition any number of times (including zero times).

Formally, regular expression is defined by the following rules.

• ϕ is a regular expression, which denotes {} ⊆ Σ∗.

• ϵ is a regular expression, which denotes {ϵ}.

• For each a ∈ Σ, a is a regular expression, which denotes {a}.

• If r and s are regular expressions, r + s, rs, r∗ are also regular expres-
sions. If r, s denote R,S ⊆ Σ∗ respectively, then r + s denotes R ∪ S,
rs denotes RS = {uv : u ∈ R, v ∈ S}, and r∗ denotes R∗ =

∪
i≥0 R

i,
where R0 = {ϵ} and Ri = RR · · ·R︸ ︷︷ ︸

i times

.

The next theorem says a language is regular if and only if it can be
described by regular expression.

1



Theorem 1.1. Regular expression is equivalent to NFA with ϵ-moves (and
thus equivalent to DFA, NFA).

Proof. (Regular expression ⇒ NFA with ϵ-moves) We will prove, if L is
accepted by a regular expression, then there exists an NFA with ϵ-moves M
such that L = L(M).

Basis: if r = ∅, let M be an NFA with only initial state (no final state);
if r = ϵ, let M be an NFA with one state, which is both the initial state and
final state. If r = a, let M be an NFA with one initial state, and one final
state, connected by an arrow a.

For induction step, let r and s are two regular expressions equivalent to
M1, M2 respectively, and assume both r and s have at most one final state.
Expression r + s is equivalent to M defined as follows.

Figure 1: ϵ-NFA accepting expression r + s

Expression rs is equivalent to M defined as follows.

Figure 2: ϵ-NFA accepting expression rs

Expression r∗ is equivalent to M defined as follows.

Since in the last class, we see that NFA with ϵ-moves is equivalent to
DFA. For the other direction, we need to prove DFA ⇒ regular expression,

2



Figure 3: ϵ-NFA accepting expression r∗

that is, given any DFA M , there exists a regular expression r such that L(M)
is denoted by r.

The idea is to define recursively like dynamic programming. Let M =
(Q,Σ, δ, q, F ⊆ Q), where Q = {q1, q2, . . . , qn}. We will recursively define
regular expression

Rk
ij, 1 ≤ i, j, k ≤ n

and i, j could be greater than k. Let L(Rk
ij) be the set of all strings in

Σ that take M from state i to state j without going through (enter
and leave) any state numbered higher than k.

By definition, Rn
ij is the set of all strings that take M from state i to

state j. Thus, L(M) =
∪

j∈F L(Rn
1j). Let R =

⊕
j∈F Rn

1j, and we have
L(R) = L(M).

Do induction on k. Let

Rk
ij = Rk−1

ij +Rk−1
ik (Rk−1

kk )∗Rk−1
kj .

In words, consider a path from state i to state j without going through
any state numbered higher than k. There are two possibilities — either the
path does not going through any state numbered higher than k − 1, or the
path first goes from i to k (without going through any state numbered higher
than k−1), then loops at state k (without going through any state numbered
higher than k − 1), and finally goes from state k to state j (without going
through any state numbered higher than k − 1).

3



For the induction basis, i.e., k = 0, let

R0
ij =

{
a1 + . . .+ as, if i ̸= j,

a1 + . . .+ as + ϵ, if i = j,

where a1, . . . , as are the labels of the arrows from i to j.

Note that in above construction, the length of the regular expression could
be exponential in n.

2 Two-way Finite Automaton

A two-way finite automaton is a finite automaton where its head can move
in both directions. It accepts the input string if it moves its head to the right
end and enter a final state at the same time.

Formally, a two-way deterministic finite automaton M = (Q,Σ, δ, q0, F ),
where δ : Q× Σ → Q× {L,R}.

In order to formally define the language accepted by M , let us define
instantaneous description (ID) first. An instantaneous description is a snap-
shot of runtime DFA. An ID of a two-way finite automaton is a string wqx,
where w, q ∈ Σ∗ and q ∈ Q, which means the current state is q, and the head
is on the first symbol of x.

Define a relation 7→M , where I 7→M J means that J is the next ID of I.
Specifically, if I = a1 · · · ai−1qai · · · an, i > 1, then

• J = a1 · · · aipai+1 · · · an if δ(q, ai) = (p,R).

• J = a1 · · · ai−2pai−1 · · · an if δ(q, ai) = (p, L).

4



Figure 4: Instantaneous Description of 2-DFA

If i = 1 and δ(q, a1) = (p, L), then the string is rejected.
Let 7→∗

M denote the reflexive transitive closure of 7→M , that is, I 7→∗
M J

if J can be reached from I by applying 7→M any number of times (including
zero times). Let w ∈ Σ∗ be the input string, then

L(M) = {w ∈ Σ∗ : q0w 7→∗
M wp for some p ∈ F}.

Is two-way DFA strictly stronger than DFA? The answer is not so obvious.
In the next lecture, we will prove that two-way DFA and DFA are in fact
equivalent.

5


