
Lecture 13: Turing Machine

Instructor: Ketan Mulmuley
Scriber: Yuan Li

February 19, 2015

Turing machine is an abstract machine which in principle can simulate
any computation in nature.

Church-Turing Thesis: any function that is computable in nature is
Turing-machine-computable.

1 Definition

The most powerful machine we’ve seen so far is (nondeterministic) PDA
which consists of a read-only tape, a head, and a stack. Compared to the
laptop we are using, it lacks the capability of random access writing. As long
as we have a tape which supports random-access writing, there is no reason
to have two different tapes.

Figure 1: Turing machine with input w

1



Formally, Turing machine

M = (Q,Σ,Γ, δ, q0, F ⊆ Q),

where Q is a finite set of states, Σ the input alphabet, Γ ⊇ Σ∪{B} the tape
alphabet (B is a special symbol denotes “blank”), δ the transition function,
q0 the initial state, F ⊆ Q the set of final accepting states, and

δ : Q× Γ → Q× Γ× {L,R}.

The transition function δ describes the program. If δ(q, a) = (p, b, L), then
at current state q, input symbol a, machine M will go to state p, replace a
by b, and the head moves left; if δ(q, a) = (p, b, R), then at current state q,
input symbol a, machine M will go to state p, replace a by b, and the head
moves right; if δ(q, a) is undefined, then M halts, and the input is rejected.
If the current state q is in F , then machine M accepts w. If the machine
never halts, then the input is assumed to be rejected.

At the first glance, it is not clear how powerful Turing machine is. Follow-
ing is Turing’s argument why the machine can simulate anything computable
by human-like computer.

Assume someone is working at a desk with a pencil and an eraser (see
Figure 4). Instead of turning the pages, he can put the pages one by one
(looks like a tape), and moves left or right as he wants.

He is working on one page at a time. Depending on the state of his head,
where the number of states is finite assuming his head has finite number of
neurons, and the symbols he is reading on that page, he may erase some
symbols and write down some new symbols. After he is done with this page,
he may move left or right continue working on a new page. We assume each
page has finite number of pixels.

If two assumptions above hold (head has finite number of neurons and
each page has finite number of pixels), then the person is equivalent to a
Turing machine.

Therefore, we come to the conclusion that the machine can compute
anything computable by human-like computer. By the way, Turing invented
this machine when he was an undergraduate. There is another computation
system called lambda calculus first formulated by Alonzo Church, which
turns out to be equivalent to Turing machine. But I have never seen anyone
thinking like lambda calculus.

2



Figure 2: Someone works like a Turing machine

2 Instantaneous Description

In order to formally define the language accepted by a Turing machine, we
need the concept of instantaneous description. Instantaneous description is
a snapshot of Turing machine at runtime, which is α1qα2, where α1, α2 ∈ Γ∗,
q ∈ Q. String α1 is the tape content to the left of the head, q is the state,
α2 is the tape content to the right of the head (the tape head is on the first
symbol of α2).

Define I1 7→M I2 if I2 is the next ID of I1 of Turing machine M . Formally,
let

I1 = x1x2 . . . xi−1qxixi+1 . . . xn

If δ(q, xi) = (p, y, R), then

I1 7→M x1x2 . . . xi−1ypxi+1 . . . xn

If δ(q, xi) = (p, y, L), then

I1 7→M x1x2 . . . xi−2pxi−1yxi+1 . . . xn

3



when i > 1; the machine M halts if i = 1.
Let 7→∗

M be the reflexive transitive closure of 7→M . The initial ID is q0w
(If α1 or α2 is empty, we do not mention it). The language accepted by M is

L(M) = {w : q0w 7→∗
M α1pα2 for some p ∈ F, α1, α2 ∈ Γ∗}.

3 Examples

Let L = {0n1n : n ≥ 1}, which is a CFL. We will design a Turing machine
M accepting L. Let

M = (Q,Σ,Γ, δ, q0, F ⊆ Q),

where Q = {q0, q1, . . . , q4}, Σ = {0, 1}, Γ = {0, 1, X, Y,B}, F = {q4}, and δ
is shown in the following figure.

Figure 3: Turing machine accepts {0n1n : n ≥ 1}

Turing machine M works as follows: it marks the first 0 as X, then goes
to the first 1 and marks it as Y ; it goes left to the second 0, and marks it

4



as X, then goes to the second 1 and marks it as Y , etc. Until all the 0’s
and 1’s are marked, it moves to the right most symbol and then accepts. All
undefined transitions means stuck, and the input is rejected.

0 1 X Y B
q0 (q1, X,R) — — (q3, Y, R) —
q1 (q1, 0, R) (q2, Y, L) — (q1, Y, R) —
q2 (q2, 0, R) — (q0, X,R) (q2, Y, L) —
q3 — — — (q3, Y, R) (q4, B,R)
q4 — — — — —

Designing a Turing machine accepting certain language is like program-
ming. Turing machine is the minimal programming language.

Let us take another example which is not a CFL. Let L = {0n1n2n : n ≥
1}. The Turing machine works similar with the above it: it marks the first
0 as X, the first 1 as Y , the first 2 as Z; then it goes back to the second 0,
and marks it as X, the second 2 as Y , the second 2 as Z, and so on.

Figure 4: Turing machine accepts {0n1n2n : n ≥ 1}

5


