CMSC 22610 Implementation of Handout 2
Winter 2015 Computer Languages I March 1, 2015

The Virtual Machine Reference

1 Introduction

Project 4 involves generating code targeted to a stack-based virtual machine (VM). This document
is a reference for the VM and includes a description of the machine model and instruction set. The
Project 4 description discussed the code generation interface.

2 The Flang virtual machine

In this section, we describe the Flang virtual machine (VM). The virtual machine is a stand-alone
program that takes an executable file and runs it. An VM executable consists of a code sequence, a
literal table that contains string literals, and a C function table that contains runtime system functions
used to implement services such as I/0.

2.1 Values

The VM supports three types of values: 31-bit tagged integers, 32-bit pointers to heap-allocated
records of values, and 32-bit pointers to strings. A integer value n is represented by 2n + 1 in the
VM (this tagging is required for the garbage collector). The VM takes care of tagging/untagging,
so the only impact of this representation on your code generator is that integer literals must be in
the range —230 to 23Y — 1. We use word address for values (but byte addressing for instructions).

2.2 Registers

The Flang VM has four special registers: the stack pointer (SP), which points to the current top of
the stack; the frame pointer (FP), which points to the base of the current stack frame and is used to
access local variables; the environment pointer (EP), which points to the current closure object and
is used to access global variables; and the program counter (PC), which points to the next instruction
to execute.

3 Instructions

We define the semantics of the instructions using the following notation

-+« instr — ---f

which means that the instruction instr takes a stack configuration with « on the top and maps it
to a stack with (3 on the top. The instructions are organized by kind in the following description.

3.1 Arithmetic instructions

These instructions operate on 31-bit tagged integer values. The untagging and tagging is handled
automatically.

--- 1112 add :>"'(i1+’i2)
pops the top two integers, adds them and pushes the result.

- 1179 sub :>"'(i1_i2)
pops the top two integers, subtracts them and pushes the result.

- 1112 mul :>"'(i1Xi2)
pops the top two integers, multiplies them and pushes the result.

c 111 div @ — (’Ll/lz)
pops the top two integers, divides them, and pushes the result. The VM halts with an error if
19 18 Zero.

- 1112 mod :>~-i1modi2
pops the top two integers, divides them, and pushes the remainder. The VM halts with an
error if 79 is zero.

-1 neg = -+ —1
pops the integer on the top of the stack and pushes its negation.

3.2 Comparison instructions

-+ V1V equ — ... }
pops and compares the two values on top of the stack. If they are equal, then it pushes 1,
otherwise it pushes 0. Note that if the values are pointers, then the comparison pushes true if
the pointers are equal

<o+ 111g less = ---b
pops and compares the two integers on top of the stack. If ¢; < 79, then it pushes 1, otherwise
it pushes 0.

- 4119 lesseq = ---b
pops and compares the two integers on top of the stack. If i; < 79, then it pushes 1, otherwise
it pushes 0.

-v not = ---b
pops v and pushes 1 if v = 0; otherwise it pushes 0.

-v boxed = ---b
pops v and pushes 1 if v is boxed; otherwise it pushes 0.

3.3 String instructions

-8 size = ---1
pops the string s off the stack and pushes its length.

- 81 subscript — ---c
pops the integer 7 and the string s off the stack and pushes the character at position ¢ in the
string. The VM halts with an error if 4 is out of bounds.

3.4 Heap instructions

“vg -+ Up—1 alloe(n) = -+ (vg, ..., Up—1)
allocates an n element record, which is initialized from the top n stack values.

- (vgy -+, Up—1) explode = ---0vp - Up_1
pops a tuple off the stack and pushes its elements.

: <'U0, ceey fUn71> select (?,) = .-
pops a record off the stack and pushes the record’s ith component.

3.5 Stack instructions

int (n) = N
pushes the integer n onto the stack.

literal(z) = ---s;
pushes a reference to the ith string literal (s;) onto the stack.

label(l) — --- addr
pushes the code address named by the label. Note that in the encoding of this instruction, the
code address is specified as an offset from the 1abel instruction.

cV1V2 SsSwap — -:* U1
swaps the top two stack elements (equivalent to swap (1)).

S VoVt Up—1Up sSwap(n) = - Up U1 *** Un_170
swaps the top stack element with the n’th from the top. All other stack elements are un-
changed.

-V pop —_— .-
pops and discards the top stack element.

SV Up pop(n) > ...
pops and discards the top n stack elements.

v dup = ---0vv
duplicate the top of the stack (equivalent to swap (0)).

“Up U0 push(n) = - Up - Vg Up
pushes the nth element from the top of the stack.

loadlocal (n) = -V
fetches the value (v) in the word addressed by FP + n and pushes it on the stack. Note that a
function’s argument will be at offset 2, while the local variables start at offset —1.

-v storelocal(n) — ---
pops v off the stack and stores it in the word addressed by FP + n.

loadglobal (n) = -0
fetches the value (v) in the word addressed by EP 4 n and pushes it on the stack.

pushep =— ---¢p
push the current contents of the EP on the stack.

. ep popep —_— .-
pop a value from the stack and store it in the EP.

3.6 Control-flow instructions

transfer control to instruction PC + n.

-b jmpif(n) — ---
pops b off the stack and if b # 0 it transfers control to instruction PC + n.

-addr call = ---pc
pop the destination address (addr), push the current PC value (which will be the address of
the next instruction), and transfers control to addr.

entry(n) = ---fpwi - wy
pushes the current value of the FP register and sets FP to SP. Then it allocates n uninitialized
words on the stack.

-vpcfp--- ret =— ---w
resets the stack pointer to the frame-pointer, pops the saved FP into the FP register, pops the
return PC, and then jumps to the return address.

-vpcfp - addr tailecall = ---wvpc
pops the code address addr, resets the stack pointer to the frame-pointer, pops the saved FP
into the FP register,then transfers control to addr. This operation can be used to implement a
tail call from a function f to a function g, where f and g have the same number of arguments.

-t Uy, ccall(n) = -0
Calls the nth C function. The C function will pop its arguments (v;) from the stack and push
its result.

3.7 Miscellaneous instructions

nop — ---
no operation.

halt — ---
halts the program.

4 Runtime functions

The VM provides the ccall instruction to invoke C functions. C functions expect their arguments
on the stack and return their result on the stack.! C functions are specified by an index into the C
function table.

The VM provides the following runtime system functions. We present them using the same
convention that we used to present the semantics of the bytecode instruction set.

-1 ccall("VM_arg") - --- 8
pops the integer ¢ and pushes the ¢th command-line argument (argument 0 is the name of the
object file). The VM halts with an error if ¢ is out of bounds.

ccall("VM_argc") — ---1%
pushes the number of command-line arguments (plus one) on the stack.

- 81 82 ccall("VM_concat") = ---(s1"s2)
pops the strings s; and sy and pushes their concatenation.

s ccall("VM_fail") _ ...
pops the string s, prints it to standard error, and then halt the VM with an error.

-s cecall ("VM_print") = ---0
prints the string s to standard output and then pushes the Unit value on the stack.

5 Instruction encodings

Most instructions in the VM are either one, two, or three bytes long.> The first byte is consists of
a two-bit length field (bits 6 and 7), and a six-bit opcode field (bits 0-5). The length field encodes
the number of extra instruction bytes (i.e., zero for one-byte instructions, one for two-byte instruc-
tions, and two for three-byte instructions). In the case of the two and three byte instructions, the
extra bytes contain immediate data (e.g., the offset of a 1oad instruction), which is stored in 2’s
complement big-endian format.®> Figure 1 gives a list of the instructions and their lengths; note that
some instructions have both one and two or two and three-byte forms. The actual opcodes for the
VM instructions are given in the opcode . sml file, which is part of the sample code.

6 Running programs using the VM

To run a Flang program using the virtual machine, you first compile it to produce a VM object file
(say foo.vmo) and then execute the following shell command:

vm [options] foo.vmo arg; --- arg,

!The project handout states that “It is the responsibility of the caller to remove the arguments from the stack,” but I
have decided that it is easier to let the runtime functions pop their arguments.

>The one exception if the int instruction, which has a five byte form.

3The term “big-endian” means that the most significant byte comes first. For example, the number 513 = 2 % 256 + 1
is represented as the byte sequence 2, 1.

Instruction Length Comment

add, sub, mul, div, mod, neq, equ, 1

less, lesseq, not, boxed, size,

subscript

alloc(n) 2 if 0 <n <256
alloc(n) 3 if 256 < n < 2'6
select(i) 2 if 0 <17 < 256
select(i) 3 if 256 < i < 216
explode 1

int(n) 2 if =128 <n < 128
int(n) 3 ifn < —1280r128 < n
int(n) 5 ifn < —2'50r2'5<n
literal(n) 2 if —128 <n <128
literal(n) 3 ifn <—1280r128 < n
label(n) 2 if —128 <n <128
label(n) 3 ifn< —1280r 128 <n
swap 1

swap(n) 2 0<n<256

push(n) 2 0<n<256

pop 1

pop(n) 2 0 <n <256
loadlocal(n) 2 —128 < n <128
loadlocal(n) 3 ifn < —1280r128 < n
storelocal(n) 2 —128 < n < 128
storelocal(n) 3 ifn <—1280r128 < n
loadglobal(n) 2 n < 256
loadglobal(n) 3 if 256 < n < 216
pushep, popep 1

jmp(n) 2 if =128 <n < 128
jmp(n) 3 ifn<—1280r128 < n
jmpif(n) 2 if =128 <n < 128
jmpif(n) 3 ifn<—-1280r128 <n
call(n) 2 if —128 <n <128
call(n) 3 ifn < —1280r128 < n
entry(n) 2 0<n<256
entry(n) 3 if 256 < n < 216
ret,tailcall 1

ccall(d) 2 0 <1< 256

nop, halt 1

Figure 1: VM instruction lengths

The virtual machine understands three options:

-h print a help message describing the options.
-t trace the program’s execution

-g display garbage collector messages

The name of the object file and the command-line arguments following it (arg,; --- arg,) are
available to the Flang program using the arg built-in function.

7 Document history

March 11 updated description of VM_print built-in function to note that it pushes the Unit
value on the stack.

March 11 added size and subscript to Figure 1.

March 1 Original version.

