CMSC 22610 Implementation of Project 4
Winter 2015 Computer Languages I March 1

Flang bytecode generation
Due: March 16 at 10pm

1 Introduction

The final part of the project is to implement a code generator for Flang. The target of the code
generator will be a virtual machine (VM) that is described in a separate document. This project
involves two stages:

1. Translate the typed AST produced by the type checker to a simple untyped first-order IR. This
translation replaces higher-level constructs, such as data constructors, nested functions, and
pattern matching with lower-level code.

2. Generate byte code instructions for a stack-based virtual machine from the Simple IR pro-
duced by Step 1.

Unlike the previous projects, we will expect you to design and implement your own data structures
for the intermediate representation.

2 A simplified IR

Figure 1 gives a grammar for an untyped first-order functional language that can be used as an
intermediate representation (IR) for Flang programs prior to code generation. A program in this
representation consists of a sequence of function definitions, where the last definition is a function
that takes no arguments and contains the body of the program. A function definition is written as

fun f (y; (7)) = e
where the 7 are the free variables of the function and the ¥ are the function parameters.

The expression forms for the Simple IR are mostly familiar, but there are a couple of new
forms. In addition to function application, there is a primitive application form that is used for
implementing the primitive operations (excluding : :) and built-in functions. These operations are
mapped to special implementations during code generation, so it is useful to identify them at this
stage of the translation. Another new form is the tuple selection operation, which is used to extract
elements from a tuple (tuple indexing is 0-based). The last new form is the special variable self,
which is used in the implementation of self-recursive functions (see Section 4).

d+

d == funf(y; () =c¢ closed function definition
e = letx=einey local binding
| if e; then ey else e3 conditional
| e (€ e2) function application
| p(e) primitive-operator application
| (e) tuple construction
| e select ¢th component of tuple
| f function
| =z variable
| self the current function’s closure
| n number
| s string literal

Figure 1: The grammar of the Simple IR

As an example, consider the following Flang program:

let n = 1;
fun inc (i : Integer) -> Integer = i + n;
inc 2

This example can be represented as the following Simple IR code:

funincges (i; (n)) = + (i,n);
funmain (—; ()) =
letn = 1lin
let inc = (incgef, n) in
inc.0 (2; inc);

Here we are representing the function inc as a pair of its definition (i.e., code) and the variable n,
which is free in its body. Functions are written with two parameters: their environment (enclosed
in ()) and their regular parameter. We write “—" where there are no regular parameters (e.g., the
main function). We describe the details of this translation in more detail in the next four sections.

3 Data constructor representations

All Flang values are represented by a single machine word. In many cases, this word is a pointer
to heap-allocated storage, but it might also be an immediate value. We refer to values that are
represented as pointers as boxed values, while values that are represented as immediate integers are
unboxed. As we explain below, the values of a datatype may be both boxed and unboxed, in which
case we describe the type as having a mixed representation. Since type variables can be instantiated
to any type, they have a mixed representation. The Integer type maps directly onto unboxed
integers and the St ring type is represented as a pointer. Function types are also represented as
pointers and are described below in Section 4.

The representation of data constructors is the interesting case. Let 1" be a data type with n
nullary constructors C1, ..., C, and m data-constructor functions Fy of 7, ..., Fj,, of 7p,.

The following table gives the representation of the various constructors based on the number of
constructors and the representations of the 7’s.

n m | G Fj(v) T"s representation
>0 0 1 n.a. unboxed

0 1 n.a. v 71’s representation
>0 1 { v if 7; is boxed mixed
>0 1 i (v) if 7; is unboxed or mixed mixed

0 >1 | na (7, v) boxed
>0 >1]| 4 (7, v) mixed

In this chart, i means the immediate (unboxed) value ¢ and (- --) means a heap-allocated tuple.
Applying this algorithm to the the builtin datatypes we get:

Unit — 0
False — 0
True — 1
Nil — O
a::b — (a,b)

3.1 Data constructors as values

Data-constructor functions can appear in contexts other than application. In this case, the compiler
needs to n-convert the constructor. For example, we might map a constructor over a list as in the
following example:

data Point with con Pt of Integer * Integer;

map [Integer * Integer, Point] Point
((1,2)::(3,4)::Nil[Integer*xInteger])

The compiler needs to replace the occurrence of Point here with the expression
{ fun mkPoint (arg : (Integer * Integer)) —> Point = Point arg; mkPoint }

As an optimization, if there are multiple occurrences of Point as a value, they can share a single
mkPoint function defined at the top level.

3.2 Polymorphic data constructors

In addition to handling data-constructor functions used as values, we must also consider how to
handle polymorphic data types. For example, consider the following Flang code fragment:

data Option[a] with
con None
con Some of a;
let x : Option[Integer] None[Integer];
let y : [a] Option[al None;
let z : Option[Boolean] = y[Boolean];

Based on the algorithm above, we would represent None as the immediate value 0, but the question

remains about how to handle the type argument? Since types do not have a run-time significance,
we would like to treat application of a polymorphic data constructor to type arguments as a no-op.!
This choice means that the right-hand-side of y’s binding has to be n-converted as we do for data-
constructor functions that are used as values.

let y : [a] Option[a] = {fun mkNone [a] —> Option[a] = Nonel[a]; mkNone};

Strictly speaking, the eta-converted none function is not legal Flang code, since it violates the
requirement that functions have at least one value parameter, but we relax this restriction inside the
compiler.

4 Representing functions

In a lexically-scoped higher-order language like Flang, we need a representation of function values
that will support passing them as arguments, returning them as results, and embedding them in data
structures. We use heap-allocated flat closures for this purpose. A function

fun f (y : 7) => 7 = ewp;

with free variables zi, ..., =, is represented in the Simple IR as a tuple of n 4+ 1 elements:
(faef, 1, - .., Tn), where fgzor is the name of the first-order function that implements f. We call
this tuple the closure of f. The definition of fzr will have the form

funfdef(y; <H?1, ey xn>) =exp

where ezp is the translation of exp to the Simple IR.> The example on Page 2 illustrates this trans-
lation.

Function applications are translated into applying the Oth component of the function’s closure to
the pair of the function’s closure and argument. More formally, the application “e; e2” is translated
to the Simple IR expression

let f = & in £.0(é; f)
In the special case where we are applying making a self-recursive call, we can optimize the call
by directly referring to the name of the definition, instead of extracting it from the closure, and
using special variable self to refer to the closure. For example, consider the following program that
computes the factorial of 5:

fun fact (n : Integer) —-> Integer =
if (n <= 1) then 1 else n * fact(n-1);
fact 5

This program can be translated to the following Simple IR representation:
fun factger (n; () = if < (n,1) thenlelse * (n, factyer (— (n, 1); self))
fun main (—; ()) =
let fact = (factqer) in
fact.0 (5; fact)

Because fact as no free variables, its closure consists solely of the code address (fact gef).

"Note that this choice is sound for data constructors, since they are pure values, but it is not be sound for functions in
general.

2We present the translation from AST to Simple IR in a semi-formal style. If we were being more rigorous, we would
have to account for the mapping of bound AST variables to Simple IR variables in the translation of subexpressions.

4.1 Local variables

Part of the translation from AST to Simple IR involves classifying variable occurrences into one
of three kinds and determining their location: global variables whose location is specified as an
index into the function’s closure, the function parameter whose location is fixed, and local variables
whose location is in the function’s stack frame (see Section 8). A naive approach to assigning local
variable locations is to give each variable its own slot, but this is wasteful of stack space. A better
approach is to assign a variable x’s slot based on the number of local variables that are in scope at
the point of z’s definition.

4.2 Curried definitions

Function definitions in Flang can be curried, which adds some complexity to the translation to the
Simple IR. Conceptually, we can think of a curried definition?

fun f param; param, --- param, = exp;

as being syntactic sugar for the nested definition

fun fi param = {
fun fo param, = {
-
fun f, param, = exp;
fn
bi
bi
f2

}i
When combined with the translation to the Simple IR, we will see parameters become part of the
closures of the inner functions. For example, consider the following definition of a curried addition

function:

fun add (a : Integer) (b : Integer) —-> Integer = a + Db;
When translated to Simple IR, this function produces two definitions; one for the a parameter and
one for the b parameter.
fun addgp (b; (a)) = + (a)b
fun adddeﬂ (a; <) = <adddef2, a)
let add = (addgep) in

Notice that the parameter a is in the inner function’s closure.

4.3 Type arguments

Since there are no types in the Simple IR, type parameters in functions and type arguments can be
erased. Note, however, that we must preserve the underlying function abstraction and application to

3We omit the types here to reduce clutter.

preserve the program semantics. For example, consider the following, somewhat contrived, Flang
expression:
{ fun f (a : Unit) [b] => Unit = print "hi\n";
let g : [b] Unit = f Unit;
g [Integer];

g [Boolean]
}

The effect of executing this expression should be that the string "hi\n" is printed twice. Thus, the
translation of this expression to Simple IR should produce something like

funfsp (—; ()) = print ("hi\n”);
funfae (a; () = (faep);
fun main (—; ()) =
letf——(ﬂkﬂ>1n
letg =£.0(0; f)in
letx =g.0(—; g)in
g)

0 (=

4.4 Primitive functions

The AST representation does not distinguish between application of a primitive operator (e.g., +) or
Basis function (e.g., print), and application of a user-defined function. But for code generation
purposes, we need to handle these applications as special cases. To support this need, the Simple IR
distinguishes between application of user-defined functions and primitive operators.

There is a further level of distinction that is made when the Simple IR is translated to VM
bytecode. The following table summarizes the primitive operations and their mapping to VM in-
structions or run-time system functions:

= = equ argc = VM_argc
<= = lesseq arg = VM_arg

< = less fail = VM_fail

@ = VM_concat ignore = see below

+ = add neg = neg

- = sub not = not

* = mul print = VM_print
/ = div size = size

% = mod sub = subscript

As noted in the table, the ignore function should be treated specially. In general, an applica-
tion “ignore[ty] (e)” should be treated as the expression “{ e; Unit }.”

Basis functions may also appear as values. As with data-constructor-function values, we use
n-conversion to wrap primitive operations as a regular function values. Lastly, the instructions that
implement primitive operations (including calling run-time functions) expect multiple arguments,
whereas Flang functions take one value argument (possibly a tuple) at a time. Thus your translation
to Simple IR needs to analyze the argument of primitive applications and expand them into tuples
as necessary.

5 Translating pattern matching

The Simple IR does not have data constructors or pattern matching, so one of the tasks in translating
a program will be translating the AST match-case and pattern constructs into Simple IR code.

A Flang match case “case ezp of rules end” is translated to Simple IR code that evaluates the
argument of the case and binds it to a variable.

—

let z = ezp in rules

where exp and rules are the translations to Simple IR of the subcomponents. The simplest imple-
mentation of the rules is to test x against each pattern until a match is found. For a rule of the form
{pat => exp}, we generate code that is based on the syntax of the pattern pat. There are basically
four kinds of patterns found in the AST.#

1. A variable pattern: {y => ezp}. Variable patterns are exhaustive and must occur as the last
rule of the match case. We handle this case by translating ezp in a context that maps the AST
variable y to the Simple IR variable z.

2. A tuple pattern: { (y1,...,yn) => eap}. Tuple patterns are exhaustive and must occur as
the last rule of the match case. We handle this case by creating Simple IR variables (7;)
corresponding to the AST variables (y;) in the pattern and generating the code

lety; = 2.0in ---lety, = z.(n — 1) in exp
Note that tuples are indexed from 0.

3. A nullary-data-constructor pattern: {C => ezp}. If this pattern is the last pattern in the match
case, then it is exhaustive (recall that the type checker checks the exhaustiveness of match
cases). In that situation, the resulting code is the translation of the right-hand-side expres-
sion. If the rule is not the last rule, then we need to test x against the representation of the
constructor C.

4. A data-constructor pattern: {C(y) => exp}. If this pattern is the last pattern in the match case,
then it is exhaustive (recall that the type checker checks the exhaustiveness of match cases).
In that case, the Simple IR code extract the constructor’s argument from the value and bind
it to ¢ in the translation of exp. If the rule is not the last rule, then we need to test to see if
the argument matches the constructor and, if so, extract the constructor’s argument from the
value and bind it to y in the translation of exp.

When the type of the match-case argument has mixed representation (Section 3), we need to test
if the representation is boxed or unboxed before checking constructor tag values. We assume the
existence of a primitive operator isBoxed that returns true for heap-allocated values (i.e., tuples
and strings) and false for immediate values.

To illustrate how the pattern matching translation works, we present a few simple examples.
The first is a match case that tests for the empty list:

case f Unit of { _::_ => False } { Nil[a] => True } end

*We regard the list cons (: :) patterns as a special case of the data-constructor pattern.

Recall that the List type has a mixed representation. We can test for list cons by testing if the
argument is boxed. The Simple IR implementation of this example is as follows:

letz = f.0(0; f)in if isBoxed (z) thenOelse 1

Note that the nullary-constructors Unit and False have been mapped to 0 and True has been
mapped to 1 in the resulting code.

For the second example, we consider a data type definition with three nullary constructors:
data Color with con Red con Green con Blue;
and a match case that maps the constructors to strings
case f Unit of { Red => "r" } { Green => "g" } { Blue => "b" } end

In this example, the Color type has an unboxed representation, so we just test against the construc-
tor tag values.

letz = f.0(0; f)in
if == (x,0)then”r” elseif == (x,1)then”g” else”d”

Note that we do not have to test against the tag for Blue (i.e., 2), since that is the last rule in the
match case and we know that the argument must be Blue.

The final example involves a more complicated data type for representing arithmetic expres-
sions:
data Exp with
con Add of Exp * Exp
con Mul of Exp * Exp
con Neg of Exp
con Num of Integer

The representation of the constructors is as follows: Add (v) is represented by (0, v), Mul (v) is
represented by (1, v), Neg (v) is represented by (2, v), and Num (n) is represented by (3, n). With
the representation determined, consider the following function for evaluating expressions:

fun eval (e : Exp) -> Integer =
case e of

{ Add p => case p of { (el, e2) => eval el + eval e2 } }
{ Mul p => case p of { (el, e2) => eval el * eval e2 } }
{ Neg e => neg (eval e) }

{ Num n => n }

end

Translating this function yields the following Simple IR code:

fun evalyy(e; () =
if == (e.0,0) then

letp =e.lin
letel =p.0in
lete2 =p.lin

+ (evalger (el; self), evalyer (€2; self))
else if == (e.0,1) then

letp=-e.lin
letel =p.0in
lete2 =p.lin
* (evalger (el; self), evalger (€2; self))
else if == (e.0,2) then

lete =e.lin
neg (evalgy (e; self))
elseletn =e.linn

Notice that since eval is self-recursive, we use the self expression form for the closure on recursive
calls.

6 Hints for Part 1

The first part of this project involves orchestrating a number of different analyses and transforma-
tions. A key to implementing this code successfully is keeping your code modular; do not try to do
every thing in one monolithic pass. We recommend structuring your code as follows:

e An AST to AST pass that simplifies the AST by converting curried definitions to nested
definitions (see Section 4.2), expanding where necessary (see Sections 3.1, 3.2, and 4.4),
and expanding applications of the built-in function ignore (see Section 4.4).

e An analysis pass over the simplified AST that computes the free variables of every function
definition. You can represent the result of this information using a hash table that maps
functions to sets of their free variables.

e An analysis pass over the simplified AST that computes the representations of data con-
structors. You can represent the result of this information using a hash table that maps data
constructors to a description of their representation.

e The translation pass that converts the simplified AST to your Simple IR representation. This
pass must handle the translation of functions and data constructors, identify primitive opera-
tions, and expand pattern matching. Because of simplification, however, it has fewer special
cases to handle (e.g., primitive operators will always be in application contexts).

In addition to these components, you will need to design a representation of the Simple IR.
Your representation does not need to slavishly follow the abstract syntax given in Figure 1, but
rather should be designed to make code generation straightforward. For example, the important
information about variable occurrences in the Simple IR is where they are bound (global, parameter,

or local) and their offset. You may also want to include the variable name for debugging purposes,
but one approach to a Simple IR expression representation might have three different constructors
for variables:
datatype exp
= GlobalVarExp of int (# global-variable reference +)
| ParameterExp (+ function parameter x)

| LocalVarExp of int (# local-variable reference x*)

Another design decision will be how to represent primitive operations in the Simple IR.

7 The virtual machine

The second phase of this project is to translate the Simple IR to virtual-machine bytecode. The
virtual machine is a stand-alone program that takes an executable file and runs it. A VM executable
consists of a code sequence, a literal table that contains string literals, and a C function table that
contains runtime system functions used to implement services such as I/O. The details of this ma-
chine are described in a separate document, but we give a brief overview here.

The VM is a 32-bit machine that supports three types of values: 31-bit tagged integers, 32-bit
pointers to heap-allocated records of values, and 32-bit pointers to strings. A integer value n is
represented by 2n + 1 in the VM (this tagging is required for the garbage collector). The VM takes
care of tagging/untagging, so the only impact of this representation on your code generator is that
integer literals must be in the range —230 to 230 — 1.

The VM has four special registers: the stack pointer (SP), which points to the current top of
the stack; the frame pointer (FP), which points to the base of the current stack frame and is used
to access function parameters and local variables; the environment pointer (EP), which points to
the current function’s closure and is used to access global variables; and the program counter (PC),
which points to the next instruction to execute.

8 Calling convention

The VM has a number of special operations and registers designed to support higher-order functions.
As discussed above, a Flang function application “ej e2” is translated to the Simple IR expression

let f =é1in f.0(é2; f)

which fixes the order of evaluation (i.e., ey is evaluated before e3). We implement the Simple IR
function call “e (eq, ..., ey; €’)” using a four-part protocol (or calling convention):

1. The first stage of the protocol is the call, which is executed by the caller. The caller evaluates
the arguments (eq, ..., e,)in order pushing the results on the stack (for Flang, functions only
have zero or one arguments). Then the caller evaluates the function closure (e’) and pushes
it on the stack (the closure will always be a variable or self). Next the caller evaluates the
function address (e) and pushes it on the stack. Finally, the caller executes a call instruction,
which pops the function’s address and transfers control to the function.

2. The second stage of the protocol is the function prologue, which is executed by the callee.
The first instruction in the prologue is an entry (n) instruction, where n is the number of

10

caller’s frame

arguments
FP+3:

FP+2: closure

return PC

saved FP [«<— FP

FP-1:
local

variables
FP-n:
stack

temporaries
<— SP

V
lower addresses

Figure 2: Stack-frame layout

local-variable slots required for the function. Executing this instruction pushes the caller’s
frame-pointer, sets the new frame pointer to point to the top of the stack, and then allocates
space for local variables. The callee then pushes its closure on the stack using a loadlocal (2)
instruction and sets the EP using popep. Figure 2 illustrates the layout of a function’s stack
frame after the prologue has been executed.

3. The third stage of the protocol is the function epilogue, which is executed by the callee after
the function body has completed execution and the return result is on top of the stack. The
callee uses a storelocal (2) instruction to store the result in the closure slot of the stack and
then executes a ret instruction that deallocates the local variable space, restores the caller’s
frame pointer, and transfers control to the return address with the result on the top of the stack.

4. The final stage of the protocol is the function return, which is executed by the caller. Upon
return, the top of the stack is the function’s result and below that are the function arguments.
The caller needs discard the arguments to the call, which are below the result, and restore
its EP. The first step is done by calling swap to swap the argument with the function result,
followed by a pop to discard the argument.> The caller then restores its EP by executing a
loadlocal (2) followed by a popep instruction.

SRemember that type functions have no arguments, so these instructions are only required for value functions.

11

Ellet x = e; in e

E[if e; then e; else es]

Elfaer (€1, ..., en; self)]

Ele(er, ..., en; €]

Elp(er, ..., en)]

Elei]; storelocal(z); Eez]

Ele]; dmpif(l); Efes]; dmp(l'); I: Efea]; U
where [and !’ are fresh labels

Ele; -+ 5 Elen]; Label(ly); call

Elel; -+ 5 Elenl; 5[[6/]]; Ele]; eall,

loadlocal(2); popep

Ele]; -+ ; Elen]; INSTR, if pis an operator
Elei]; -+ 5 E[en]; ccall(p) if pis a built-in function

Eler, ..., en)] Eler]; -+ 5 Elen]; alloe(n)
Ele.i] Ele]; select(i)
E[faer] label(ly)
where [is the label for fgr
£l { loadlocal(z) %f x %s a parameter or local
loadglobal(z) if zisa global
E[self] cannot happen, since self only occurs in applications
Eln] int(n)
Ells] literal(i)

where ¢ is the index of the string literal in the literal table

Figure 3: VM code generation for Simple IR expressions

There are several optimizations of this protocol for when the call is a tail call, or self-recursive
call, or when the function does not have global variables.

9 Bytecode generation

The Simple IR is designed to translate easily to the VM bytecode. We define the basic translation
of Simple IR expressions as a function

&[] : Exp — CODE

[T

where CODE is a finite sequence of VM instructions and labels. We use ““;” to represent code
concatenation, [: to represent a label in the sequence (and omit the following *;”), and INSTR,, to
represent the VM instruction corresponding to a primitive operator p (e.g., add for + and equ for
==). The definition of £ is given in Figure 3 The translation is mostly self-explanatory, but a couple
of cases are worth further remark. The caller-side parts of the calling convention are captured by
the translation and there is a special case for self-recursive calls too. The translation of variables
depends on the kind of variable (see Section 4.1).

12

For a function definition fun f4.f (7; (T)) = e with globals Z and parameters 7, we wrap the
translation €[e] with the function prologue and epilogue, resulting in the code:
ly:
entry (n)
loadlocal (2)
popep
Ele]
storelocal (2)
ret

where n is the number of local-variable slots required for execution.

9.1 Bootstrapping

The VM starts executing the first instruction in the generated code. Sine the program should start
by executing the main function, we need to emit a short sequence of code at the beginning of the
code stream (see Section 10.1) to call the main function and then halt the VM upon return. The
bootstrap code is

label (main) // push the label main
alloc (1) // allocate main’s closure
label (main) // push the label main
call // call main

halt // halt on return

9.2 Improvements

For extra credit, there are a couple of improvements you can make to the code generation process.

1. Function calls that are in tail position can be implemented using the tailcall instruction
(instead of a call followed by a ret). Furthermore, self-recursive calls can be implemented
by storing the argument in the function’s parameter slot and jumping to the code following
the function’s prelude.

2. As discussed in lecture, you can eliminate jumps to jumps as part of the code generation
process.

9.3 An example

To illustrate the code generation process, we revisit the example from Section 2, which translated to
the following Simple IR:
funincges (i; (n)) = + (i, n);
funmain (—; ()) =
letn =1in
let inc = (incgef, n) in
inc.0 (2; inc);

The VM code for this example is given in Figure 4 (including the bootstrap code).

13

label (main) // push the label main

alloc(1l) // allocate main’s closure
label (main) // push the label main
call // call main
halt // halt on return

inc: entry (0) // inc has no locals
loadlocal (2) // push the closure
popep // set the EP
loadlocal (3) // push the argument 1
loadglobal (1) // push the global n
add
storelocal (2) // save result in closure slot
ret

main: entry (2) // main has two locals: n and inc
loadlocal (2) // push the closure
popep // set the EP
int (1)
storelocal(-1) // store value of local n
label (inc) // push the label inc
loadlocal (-1) // push the local n
alloc(2) // allocate inc’s closure
storelocal(-2) // store value of local inc
int (2)
loadlocal (-2) // push inc’s closure
loadlocal (-2) // push inc’s closure
select (0) // pop closure and push code address
call // apply inc(2)
swap // swap result and argument
pop // discard argument
storelocal (2) // save result in closure slot
ret

Figure 4: VM code for the example from Section 2

10 The code generation API

The code generation API is organized into three user-facing modules. The Emit module imple-
ments code streams, which are an abstraction of the generated output file, the Labels module
implements labels for naming code locations, and the Instructions module implements an
abstract type of VM instructions. Each of these modules is described below.

10.1 Code streams

A code stream provides a container to collect the instructions emitted by your code generator. You
create a code stream from a file name and once code generation is complete, you invoke the finish
operation, which does an assembly pass and then writes the binary object file to disk. The Emit
module also provides hooks for registering string literals and the runtime functions used in Sec-
tion 4.4.

14

10.2 Labels

The Labels module defines an abstract type of label that is used to represent code locations.
The Emit structure provides the defineLabel function for associating a label with the current
position in the code stream, and the control-flow instructions take labels as arguments. There is
also an instruction for pushing the value of a label on the stack, which is required to create function
closures.

10.3 Instructions

The Instructions module provides an abstract type that represents VM instructions. For those
instructions that take arguments, it provides constructor functions and for those without arguments,
it provides abstract values.

11 Submission

We will create a prog4 director in your phoenixforge repositories and seed it with with a
sample implementation of the type checker and the code generation API. Your project is due on
Monday, March 16 at 10pm, so make sure that you have committed your final version before then.

12 Document history

March 16 Corrected description of function-call epilogue to include the discarding of function
arguments. Also corrected Figure 4.

March 3 Added a bit more discussion about handling primitive operators.

March 2 Changed the data-construction-representation table to add a row for when there are no
nullary constructors and multiple constructor functions.

March 1 Original version.

15

