
CMSC 22610
Winter 2015

Implementation of
Computer Languages I

Project 3
February 9, 2015

Flang typechecker
Due: February 27, 2015

1 Introduction

The third project is to implement a type checker for Flang, which checks whether or not a parse
tree is statically correct and produces a typed abstract syntax tree (AST). The abstract syntax tree
includes information about the binding sites of identifiers and about the types of variables and
expressions. The project seed code will provide an ML-ULex based scanner (but you may also
use your hand-written scanner from Project 1), an ML-Antlr based parser (but you may also use
your parser specification from Project 2), and modules for implementing the abstract-syntax-tree
representation. The bulk of this document is a formal specification of the typing rules for Flang.1

The type system for Flang is essentially an enrichment of the System F type system.

2 Syntactic restrictions

There are a number of syntactic restrictions that should be enforced by the type checker. Some of
these are properties that could have been specified as part of the grammar in Project 2, but would
have made the grammar much more verbose. Others are properties that could be specified as part
the typing rules below, but it is easier to specify them separately.

• The type variables in a type or data definition must be distinct.

• The type variables in a type abstraction must be distinct.

• The data constructors in a data-type definition must be distinct.

• The value parameter names of a function definition must be distinct, and the name of the
function must not be the same as any of the value parameters.

• The type parameter names of a function definition must be distinct.

• A function definition must have at least one value parameter.

• The variables in a pattern must be distinct.

• The patterns in a case expression must be exhaustive and irredundant.
1Remember, a specification is a description of a property (yes/no question; true/false statement). It does not define

(though it may suggest) an implementation for deciding whether or not the property holds. A significant component of
this project is to develop the skills needed to produce an implementation from a specification.

α, β ∈ TYVAR type variables

θ(k) ∈ TYCON k-ary type constructors

τ ::= ∀α(τ) type abstraction (|α| > 0
| τ1 → τ2 function type
| τ1 × · · · × τn tuple types (n > 1)
| θ(k)[τ] type constructor instantiation (|τ | ≥ 0)
| α type variable

Figure 1: Flang semantic types

Your type checker is responsible for checking these properties and reporting an error when they are
violated.

3 Flang types

In the Flang typing rules, we distinguish between syntactic types as they appear in the program text
(or parse-tree representation) and the semantic types that are inferred for various syntactic forms.
To understand why we make this distinction, consider the following Flang program:

1 data T with
2 con A of Integer
3 con B;
4 let x : T = A 1;
5 data T with
6 con C of Integer
7 con D;
8 let y : T = B;
9 0

This program has a type error at line 8 in the declaration let y : T = B, because the type of the
data constructor expression B is the type constructor corresponding to the data declaration at line
1, but the type constraint T is the type constructor corresponding to the data declaration at line 5.
The second data declaration at line 5 shadows the earlier declaration at line 1. In the parse-tree
representation, however, all instances of T correspond to the same type constructor name (that is, as
values of the Atom.atom type.

The abstract syntax of Flang semantic types is given in Figure 1 (and represented by the Type.ty

datatype in the project seed code). The set of semantic types (TYPE) is built from countable sets
of semantic type variables (TYVAR) and semantic type constructors (TYCON). We use τ to denote
types, α and β to denote semantic type variables, and θ(k) to denote k-ary type constructors. In
the representation, we treat type constants as nullary type constructors, but we will often omit the
empty type-argument list in this document (e.g., we write Bool(0) instead of Bool(0)[]).

Each binding occurrence of a type variable (respectively, type constructor) will map to a unique
semantic type variable (respectively, semantic type constructor) in the AST representation of the
program. For example, type checking the data declaration at line 1 will introduce one type con-
structor, say θ(0)1 , and type checking the data declaration at line 5 will introduce a different type
constructor, say θ(0)2 . The syntax of semantic types mirrors the concrete syntax, with forms for type
abstraction, function types, tuple types, instantiation of type constructors, and type variables.

2

We use the syntax α to denote a sequence of bound type variables in the term ∀α(τ) and τ to denote
a (possibly empty) sequence of types in the term θ(k)[τ]. In the case that α is the empty sequence,
then ∀α(τ) = τ . We write |α| to denote the number of elements in the sequence. The capture-free
substitution of types τ for variables α in a type τ ′ is written as τ ′[α/τ].

We consider semantic types equal up to renaming of bound type variables.2 That is, we will consider
the semantic types ∀α(α → α → Bool(0)) and ∀β(β → β → Bool(0)) to be equal, whereas
the parse trees corresponding to [a] a -> a -> bool and [b] b -> b -> bool are not equal,
because they use different type variable names.

4 Flang abstract syntax

The typing rules for Flang are defined over an abstraction of the concrete syntax. We use the
following naming conventions for variables in the abstract syntax:

T ∈ TyId Type constructor identifiers
t ∈ TyVar Type variable identifiers
C ∈ ConId Data constructor identifiers

f, x ∈ ValId Value identifiers

The grammar, which is given in Figure 2, roughly corresponds to the datatypes defined in the
ParseTree module from Project 2. As with the syntax of semantic types, we use the overbear
notation to denote sequences of syntactic objects (e.g., t to represent sequences of type variables
and typ to represent sequences of types).

binary expressions

5 Environments

The typing rules for Flang use a number of different environments, which are finite maps from
identifiers to information about the identifiers. We write {x 7→ w} for the finite map that maps x to
w and we write {x 7→ w} for the map that maps elements of the sequence x to the corresponding
element of the sequence w (assuming that |x| = |w|). If E and E′ are environments, then we define
the extension of E to be

(E ± E′)(x) =

{
E′(x) if x ∈ dom(E′)
E(x) otherwise

and we write E] E′ for the disjoint union of E and E′ when dom(E) ∩ dom(E′) = ∅ (if the
domains of E and E′ are not disjoint, then E] E′ is undefined).

There is a separate environment for each kind of identifier in the parse-tree representation:

TYVARENV = TyVar ⇀ TYVAR type-variable environment
TYCONENV = TyId ⇀ TYCON ∪ (TYVAR∗ × TYPE) type-constructor environment

DCONENV = ConId ⇀ TYPE data-constructor environment
VARENV = ValId ⇀ TYPE variable environment

2This renaming is called α-conversion.

3

prog ::= def prog toplevel definition
| exp program body

def ::= typeT [t] = typ type alias definition
| dataT [t]with con data type definition
| bind value binding definition

typ ::= [t]typ type function
| typ1 → typ2 function type
| typ1 ∗ · · · ∗ typn tuple type
| T [typ] type constructor
| t type variable

con ::= C of typ data constructor
| C nullary data constuctor

bind ::= fun f fnsig = exp function binding
| let spat : typ = exp value binding
| let spat = exp value binding

fnsig ::= [t] fnsig function type parameters
| (x : typ) fnsig function value parameter
| → typ function return type

exp ::= if exp1 then exp2 else exp3 conditional expression
| exp1 :: exp2 list-cons expression
| exp1 exp2 application expression
| exp[typ] type-application expression
| (exp1, . . . , expn) tuple expression
| { scope } nested scope
| case exp of rule case expression
| x variable
| C data constructor
| lit literal

rule ::= { pat ⇒ scope } match-case rule

pat ::= C spat data-constructor pattern
| spat1 :: spat2 list-cons expression
| (spat1, . . . , spatn) tuple pattern
| C nullary-data-constructor pattern
| spat simple pattern

spat ::= x variable pattern
| wild-card pattern

scope ::= bind scope value binding
| exp expression

Figure 2: Abstract syntax of Flang

4

E ` prog I Ok type checking a program
E ` def I E ′ type checking a definition
E ` typ I τ type checking a type

E , θ(k), α ` con I E ′ type checking a data constructor definition
E ` bind I E ′ type checking a value binding

E ` fnsig I E ′, τ, τret type checking a function signature
E ` exp I τ ′ type checking an expression
E , τ ` rule I τ type checking a match-case rule
E , τ ` pat I E type checking a pattern
τ ` spat I E ′ type checking a simple pattern
E ` scope I τ type checking a scope

Figure 3: Typing judgments for Flang

A type name T can either be bound to a type expression (in a type definition), to a data-type
constructor (in a data definition), or to a primitive type constructor. We use the notation Λα : τ
to represent a parameterized type definition in the type-constructor environment, and θ(k) to denote
data-type and primitive type constructors.

Since most of the typing rules involve two or more environments, we define a combined environ-
ment.

E ∈ ENV = TYVARENV × TYCONENV × DCONENV × VARENV

We extend the notation on finite maps to the combined environment in the natural way:

〈TVE ,TCE ,DCE ,VE 〉 ± 〈TVE ′,TCE ′,DCE ′,VE ′〉
= 〈TVE ± TVE ′,TCE ± TCE ′,DCE ±DCE ′,VE ±VE ′〉

〈TVE ,TCE ,DCE ,VE 〉] 〈TVE ′,TCE ′,DCE ′,VE ′〉
= 〈TVE] TVE ′,TCE] TCE ′,DCE]DCE ′,VE]VE ′〉

We also use the kind of identifier in the domain as a shorthand for extending an environment with a
new binding. For example, by convention x ∈ ValId, so we will write E ± {x 7→ τ} for

〈TVE ,TCE ,DCE ,VE ± {x 7→ τ}〉

where E = 〈TVE ,TCE ,DCE ,VE 〉.

6 Typing rules

The typing rules for Flang provide a specification for the static correctness of Flang programs. The
general form of a judgement, as used in the Flang typing rules, is

Context ` Term I Descr

which can be read as “in Context , Term has Descr .” The context is usually an environment, but
may include other information, while the description is usually a semantic type and/or an (extended)
environment. The different judgement forms used in the typing rules for Flang are summarized in
Figure 3. Formally, the judgments are smallest relation that satisfies the typing rules.

5

The typing rules for Flang are syntax directed, which means that there is a typing rule for each
(major) syntactic form in the parse-tree representation of Flang programs. For each of the syntactic
forms in the abstract syntax, there is a typing rule written in a natural deduction style.

premise1 · · · primisen
conclusion

where the conclusion will be the typing judgment for the syntactic form in question.

6.1 Programs E ` prog I Ok

For a program, we check that it is well-formed (i.e. that the types, expressions, and definitions are
type check).

For a top-level definition, we check the definition and then check the rest of the program using the
enriched environment.

E ` def I E ′ E ′ ` prog I Ok
E ` def prog I Ok

The body of the program is well-formed if it type checks.

E ` exp I τ

E ` exp I Ok

6.2 Definitions E ` def I E ′

Type definitions are checked by binding the syntactic type parameters (t) to fresh semantic type
variables (α) and then checking the right-hand-side type expression.

α are fresh |t | = |α| = k E ± {t 7→ α} ` typ I τ E ′ = E ± {T 7→ Λα : τ}
E ` typeT [t] = typ I E ′

Checking a data-type definition requires checking the data-constructor definitions in an environment
that has been extended with bindings for both the data-type constructor and type variables.

α are fresh |t | = |α| = k θ(k) is fresh E ′ = E ± {T 7→ θ(k)}
E ′ ± {t 7→ α}, α, θ(k) ` coni I Ei for 1 ≤ i ≤ n

E ` dataT [t]with con1 · · · conn I E ′ ± (E1] · · ·] En)

The value binding definition is checked just like a value binding (see Section 6.5).

E ` bind I E ′

E ` bind I E ′

6

6.3 Types E ` typ I τ

The typing rules for types check for well-formedness and translate the syntactic types to semantic
types.

Type checking a type-function type requires introducing fresh semantic type variables (α) for the
syntactic type variables (t).

α are fresh E ± {t 7→ α} ` typ I τ

E ` [t]typ I ∀α(τ)

Type checking a function type requires checking the argument type and the result type.

E ` typ1 I τ1 E ` typ2 I τ2

E ` typ1 → typ2 I τ1 → τ2

Type checking a tuple type requires checking the component types to form a (semantic) tuple type.

E ` typ1 I τ1 · · · E ` typn I τn

E ` typ1 ∗ · · · ∗ typn I τ1 × · · · × τn

There are two rules for type checking a type-constructor application, depending on whether the type
constructor identifier corresponds to a type definition or a data definition (or a builtin abstract
type). For type definitions, we check the actual (syntactic) type arguments and then substitute the
actual (semantic) type arguments for the formal type parameters to produce a new (semantic) type.

E (T) = θ(k) |typ| = k E ` typ I τ

E ` T [typ] I θ(k)[τ]

For data definitions (or abstract types), we check the type arguments and then construct a new
(semantic) type by substituting the τ for the α.

E (T) = Λα : τT |α| = |typ| E ` typ I τ

E ` T [typ] I τT [α/τ]

Type checking a type variable identifier returns its semantic type variable, as recorded in the envi-
ronment.

t ∈ dom(E)

E ` t I E (t)

6.4 Data constructors E , α, θ(k) ` con I E ′

Checking a data constructor involves checking that its argument type is well-formed.

E ` typ I τ

E , α, θ(k) ` C of typ I {C 7→ ∀α(τ → θ(k)[α])}

Checking nullify data constructors requires no additional checks.

E , α, θ(k) ` C I {C 7→ ∀α(θ(k)[α])}

7

6.5 Value bindings E ` bind I E ′

Type checking a function binding involves first checking its signature, which produces an enriched
environment, the function’s type (signature), and the function’s return type. Then we check the
return type against the function’s body using the enriched environment extended with the type of f
(we need the type of f to support recursive functions).

E ` fnsig I E ′, τ, τret E ′ ± {f 7→ τ} ` exp I τret

E ` fun f fnsig = exp I E ± {f 7→ τ}

where ReturnType(τ) is the return type of the function.

Type checking a variable binding with a type constraint requires checking that the declared type is
well formed and that the right-hand-side expression has that type.

E ` typ I τ E ` exp I τ τ ` spat I E ′

E ` let spat : typ = exp I E ± E ′

Type checking an unconstrained variable binding requires checking the right-hand-side expression
and then using the resulting type as the context for checking the simple pattern.

E ` exp I τ τ ` spat I E ′

E ` let spat = exp I E ± E ′

A value binding that is just an expression exp is viewed as syntactic sugar for the binding

let : Unit = exp

which is reflected in its typing rule.

E ` exp I Unit(0)

E ` exp I E

6.6 Function signatures E ` fnsig I E ′, τ, τret

Type checking a function signature produces an environment enriched by the function parameter
bindings, the type of the function, and the function’s return type.

For type parameters, we bind the names to fresh type variables and define the function’s type to be
a type function.

α are fresh E ± {t 7→ α} ` fnsig I E ′, τ, τret

E ` [t] fnsig I E ′,∀α(τ), τret

For a value parameter, we check the declared type, bind the name to the type, and define the func-
tion’s type to be a function.

E ` typ I τ E ± {x 7→ τ} ` fnsig I E ′, τ ′, τret

E ` (x : typ) fnsig I E ′, τ → τ ′, τret

8

For the return type of the signature, we check that the type is well formed and return it as both the
function’s type and the return type.

E ` typ I τ

E ` → typ I E , τ, τ

6.7 Expressions E ` exp I τ

Type checking an if expression requires checking that the condition expression has the boolean
type and that the then expression and the else expression have the same type.

E ` exp1 I Bool(0) E ` exp2 I τ E ` exp2 I τ

E ` if exp1 then exp2 else exp3 I τ

For list construction, we check that the right-hand-side expression has a list type and that the left-
hand-side expression’s type matches the element type of the list.

E ` exp1 I τ E ` exp2 I List(1)[τ]

E ` exp1 :: exp2 I List(1)[τ]

Application of a function requires checking both expressions and checking that the function expres-
sion has a function type whose domain is the same as the type of the argument expression.

E ` exp1 I τ ′ → τ E ` exp2 I τ ′

E ` exp1 exp2 I τ

For application of a type function, we check that the function expression has a type-function type and
that the argument types are well-formed. The type of the application expression is the substitution
of the (semantic) type argument for the abstracted type variable in the result type.

E ` exp I ∀α(τ) E ` typ I τ ′ |α| = |typ|
E ` exp[typ] I τ [α/τ ′]

Checking a tuple expression involves checking each of the subexpressions.

E ` expi I τi for 1 ≤ i ≤ n
E ` (exp1, . . . , expn) I τ1 × · · · × τn

The rules for type checking the body of a nested scope are given below in Section 6.11. The resulting
type is the type of the expression.

E ` scope I τ

E ` { scope } I τ

E ` exp I τ E , τ ` rulei I τ ′ for 1 ≤ i ≤ n
E ` case exp of rule1 · · · rulen I τ ′

9

Variables are mapped to their type in the environment.

x ∈ dom(E)

E ` x I E (x)

Like variables, data constructors are mapped to their type in the environment.

C ∈ dom(E)

E ` C I E (C)

To type check literal expressions, we assume a function TypeOf that maps literals to their type (i.e.,
ether Integer(0) or String(0)).

E ` lit I TypeOf(lit)

6.8 Match-case rules E , τ ` rule I τ ′

Match-case rules combine pattern matching with a scope. To check them, we first check the pattern
against the match-case argument type and then use the resulting environment to check the scope.

E , τ ` pat I E ′ E ± E ′ ` scope I τ ′

E , τ ` { pat ⇒ scope } I τ ′

6.9 Patterns E , τ ` pat I E ′

Type checking patterns is done in a context that includes both the environment and the expected type
(or argument type) of the pattern. The result is an environment that binds the pattern’s variables to
their types.

Checking the application of a data constructor to a simple pattern involves checking that the ex-
pected type is a type-constructor application and that the type of the data constructor is a (possibly
polymorphic) function type with a range that matches the type constructor. We check the argument
pattern with an expected type that is the domain of the function type instantiated to the expected
argument types. The result environment is the environment defined by the argument pattern.

τ = θ(k)[τ ′] E (C) = ∀α(τ ′′ → θ(k)[α]) τ ′′[α/τ ′] ` spat I E ′

E , τ ` C spat I E ′

The list-constructor pattern requires that the expected type be a list type. We check that the left-
hand-side pattern is the element type and the right-hand-side pattern is the list type. The result
environment is the disjoint union of the environments defined by the argument patterns.

τ = List(1)[τ ′] τ ′ ` spat1 I E1 τ ` spat2 I E2

E , τ ` spat1 :: spat2 I E1 ± E2

10

A tuple pattern requires that the expected type be a tuple of the same arity. We check each subpattern
in the context of the corresponding type and then union the resulting environments.

τ = τ1 × · · · × τn
τi ` spat i I Ei for 1 ≤ i ≤ n

E ′ = E1] · · ·] En

E , τ ` (spat1, . . . , spatn) I E ′

Checking a nullary constructor requires matching the constructor’s type (which may be polymor-
phic) against the argument type given by the context.

τ = θ(k)[τ ′] E (C) = ∀α(θ(k)[α])

E , τ ` C I ∅

Simple patterns are checked in a context of the expected type and the resulting environment is the
result of checking the pattern.

τ ` spat I E ′

E , τ ` spat I E ′

6.10 Simple patterns τ ` spat I E ′

Simple patterns are checked in the context of their expected type, which is used to define the result-
ing environment.

Type checking simple patterns yields an environment that binds the pattern’s variable to the context
type.

τ ` x I {x 7→ τ}

For wild-card patterns, the resulting environment is empty.

τ ` I ∅

6.11 Scopes E ` scope I τ

Checking a binding extends the environment, which is then used to check the rest of the scope’s
body.

E ` bind I E ′ E ′ ` scope I τ

E ` bind scope I τ

The type of a scope’s body is the type of the last expression.

E ` exp I τ

E ` exp I τ

11

7 Predefined identifiers

Flang programs can use a number of predefined types, constructors, operators, and functions. This
section details the types for these.

7.1 Binary operators

The grammar given in Figure 2 does not include a form for infix binary operators. Instead, we
treat the expression exp1 � exp2 as shorthand for � (exp1, exp2). The binary operators have the
following types:

== : Integer(0) × Integer(0) → Bool(0) integer equality
<= : Integer(0) × Integer(0) → Bool(0) integer less-than-or-equal
< : Integer(0) × Integer(0) → Bool(0) integer less-than
@ : String(0) × String(0) → String(0) string concatenation
+ : Integer(0) × Integer(0) → Integer(0) integer addition
- : Integer(0) × Integer(0) → Integer(0) integer substraction
* : Integer(0) × Integer(0) → Integer(0) integer multiplication
/ : Integer(0) × Integer(0) → Integer(0) integer division
% : Integer(0) × Integer(0) → Integer(0) integer modulo

Note that the infix list-constructor :: has its own syntactic form for both expressions and patterns,
along with special typing rules.

7.2 The Flang basis

A Flang program is checked in the context of an initial environment (also known as a basis environ-
ment) E0 that provides predefined type constructors, data constructors, and variables. This initial
environment is defined as follows:

E0 = 〈TCE 0,TCE 0,DCE 0,VE 0〉

where

TCE 0 = {}

TCE 0 =



Bool 7→ Bool(0)

Integer 7→ Integer(0)

List 7→ List(1)

String 7→ String(0)

Unit 7→ Unit(0)



DCE 0 =


False 7→ Bool(0)

Nil 7→ ∀α(List(1)[α])

True 7→ Bool(0)

Unit 7→ Unit(0)


12

VE 0 =



argc 7→ Unit(0) → Integer(0)

arg 7→ Integer(0) → String(0)

fail 7→ ∀α(String(0) → α)

ignore 7→ ∀α(α→ Unit(0))

neg 7→ Integer(0) → Integer(0)

not 7→ Bool(0) → Bool(0)

print 7→ String(0) → Unit(0)

size 7→ String(0) → Integer(0)

sub 7→ String(0) × Integer(0) → Integer(0)


The provided Basis module defines the semantic objects for these identifiers.

8 Building the abstract syntax tree

In addition to checking the program for type correctness, your program is also responsible for con-
verting the parse tree representation of the program into the abstract syntax tree (AST) representa-
tion. The typed abstract syntax tree (AST) is a further simplification of the program representation.

• Unlike the parse tree, the AST does not include source location information.

• AST type variables, type constructors, data constructors, and variables in the AST represen-
tation are implemented the types TyVar.t, TyCon.t, DataCon.t, and Var.t (respec-
tively). As discussed in Section 3, semantic type variables, type constructors, data construc-
tors, and variables are used to distinguish different binding occurrences, which otherwise have
the same syntactic names. Each of the provided modules includes a new function for creating
unique identifiers.

• Variables bound in simple patterns include their type.

• Wild cards are replaced with unique variables.

• There is no type declaration form; all type abbreviations will have been expanded during
type checking and conversion to the abstract syntax tree.

• The let declaration form has no type constraint, since the representation of AST variables
includes the variable’s type.

• Polymorphic data constructors in patterns are applied to their type arguments.

• The body of program is represented as a single expression.

We have already introduced one form in the abstract syntax tree representation: the semantic types
from Section 3. Similarly, we have already introduced one judgement for translating a parse tree
representation form into an abstract syntax tree representation form: the judgement for type check-
ing types from Section 6.3:

E ` typ I τ in the environment E , the parse tree type typ is
well-formed and translates to the AST type τ .

13

We can imagine other judgements that combine type checking with translation to the AST:

E ` exp I τ ; e in the environment E, the parse tree expression
Exp has the abstract syntax tree type τ and trans-
lates to the abstract syntax tree expression e.

E ` def I E ′; d in the environment E, the parse tree declaration
Decl returns the environment E′ and translates to
the abstract syntax tree declaration d.

E ` prog I p the parse tree program Prog is statically correct
and translates to the abstract syntax tree program
p.

The inference rules for these judgements will be very similar to those given in Section 6, except
they will construct an appropriate output abstract syntax tree form.

9 Hints

• This project is the most difficult and substantial of the projects, so budget your time appropri-
ately and start early.

• Study the sample code carefully. You will need to be familiar with the types and operations
in the ParseTree, Type, and AST modules.

• Think about how to represent the environment(s). The SML/NJ Library AtomMap structure
provides an implementation of finite maps on Atom.atom keys. You may find it useful to
define a “context” type that groups the envronments with the current span and the error stream.

• Think about the structure of the type-checker implementation. Each judgement can be im-
plemented as a function; just as the parse tree datatypes for expressions, match rules, and
declarations are mutually recursive, the functions for judgements that type check expressions,
match rules, and declarations will be mutually recursive. Each function for a judgement will
have a case for each typing rule with that judgement as the conclusion.

• Work in stages. First implement a simple binding checker that only checks that the program
has no unbound variables (but does not check types and does not produce an abstract syntax
tree). This binding checker will establish the basic structure of the implementation. Next,
implement a type checker that checks for unbound variables and checks types (but does not
produce an abstract syntax tree). This type checker will require extending the simple binding
checker, but will very closely match the typing rules from Section 6. Next, implement a
full type checker that checks for unbound variables, checks types, and produces an abstract
syntax tree. This full type checker will require additional information to be carried in the
environment and to be returned by each type checking function. Finally, extend the full type
checker to additionally check the syntactic restrictions of Section 2.

• Work on error reporting last. Detecting errors and producing good error messages can be
difficult; it is more important for your type checker to work on good programs than for it to
“work” on bad programs. Again, work in stages. First implement a type checker that stops
after detecting the first error. Then implement a type checker that continues after detecting an
error.

14

10 Requirements

We will seed a directory, called proj3, in your phoenixforge repository. The directory will
contain subdirectories for the parser and scanner (proj3/parser), type checker (proj3/typechecker),
common utility code (proj3/util), and the driver (proj3/driver).

Your task is to implement the type checker according to the rules given in this document. We will
collect the projects at 10pm on Friday February 27th from the SVN repositories, so make sure
that you have committed your final version before then.

Document History

February 10, 2015 Fixed a number of minor typos

February 9, 2015 Original version

15

