CMSC 22610 Implementation of Project 2
Winter 2015 Computer Languages I January 22, 2015

Flang parser
Due: February 6, 2015

1 Introduction

The second project is to implement a parser for Flang, which will convert a stream of tokens into an
parse tree. The grammars for most programming languages are of sufficient complexity that such
components of a compiler are best written using a parser generator; i.e., an external tool that takes
the specification of a grammar and produces code for a corresponding parser. (Parser generators can
also analyze the grammar sepecification and identify potential ambiguities.)

For this project, we will use ML-Antlr, which is an LL(k) based parser generator. ML-Antlr is
documented as part of the ML-LPT Manual, which is linked to on the course web site. The project
seed code includes a ML-ULex based scanner (ML-ULex is also part of ML-LPT), but you may also
adapt your Project 1 lexer to work with ML-Antlr. The seed code also includes a module defining
the parse-tree representation and a skeleton of the ML-Antlr specification.

2 Requirements

We will seed a directory, called proj2, in your phoenixforge repository. This directory will
contain the following files:

basis-names.sml — defines Atom.atom values for the binary operators.
error.sml — An SML source file that supports error reporting.

flang.grm — This file contains a skeleton of an ML-Antlr parser specification file for parsing
Flang programs.

flang.lex — An ML-ULex lexer specification for scanning Flang. You may choose to use
this scanner for your project, or, for extra credit, you may choose to use the lexer you wrote
for Part 1 of the project (doing so will require some restructuring of the Project 1 code as
described in Section 5).

flang-hand-lexer.sml — Defines a wrapper around a hand-written scanner (if you choose
to use your Project 1 code).

flang-hand-scanner-sig.sml — Defines a signature FLANG_HAND_SCANNER that your Project 1
lexer must match (if you choose to use your Project 1 code).

parser.sml — An SML source file containing the definition a structure Parser, that combines
the lexer and parser into a single function for parsing files.

parse-tree.sml — An SML file containing the module ParseTree that defines the parse-
tree representation of MinML programs.

print-parse-tree.sml — AnSML file containing the module PrintParseTree for print-
ing parse trees using an S-expression syntax.

sources.cm — A CM sources file for compiling your project. You will need to modify this file
if you choose to use your code from Project 1.

In addition, you should add any other files that you need to your repository.

Your task is to complete the f1ang. grm file according to the definition of Flang as described
in Section 3.

We will collect the projects at 10pm on Friday February 6th from the SVN repositories, so
make sure that you have committed your final version before then.

3 Flang Grammar

Literal symbols, such as keywords and punctuation, are written inabold fixed-width font,
other terminal symbols are written in roman font, and non-terminal symbols are written in italic font.
We use the following terminal symbols in the grammar:

Terminal Lexical class Description

Tyld upper-case identifier type constructor and data types
Ty Var lower-case identifier type variable

Conld upper-case identifier data constructor

Valld lower-case identifier value identifier

The concrete syntax of Flang is specified by the following context free grammar:

Program
= (Definition ;)* Exp

Definition
= type Tyld TypeParams®" = Type
| data Tyld TypeParams® with ConDef"
| ValBind

ConDef
= con Conld (Of Type)ow

TypeParams
m= [TyVar (, TyVar)*]

Type
= TypeParams Type

| Type —> Type

| Type (* Type)*

| Tyld TypeArgs™

| TyVar

| (Type)

TypeArgs
n= [Type (, Type)"]

ValBind
= fun Valld FunParam™ —> Type = Exp

| let SimplePat (: Type)°P' = Exp

| Exp

FunParam
= TypeParams

| (Valld : Type)

Exp
= if Exp then Exp else Exp

| Exp==Exp

| Exp<Exp

| Exp<=Exp

| Exp:: Exp

| Exp@Exp

| Exp+Exp

| Exp-Exp

| Exp* Exp

| Exp/ Exp

| Exp%Exp

| ApplyExp

ApplyExp
= AtomicExp

| ApplyExp AtomicExp

| ApplyExp TypeArgs

AtomicExp
== Valld
| Conld
| Int
| String
| (Exp (, Exp)*)
| { Scope }
| case Exp of MatchCase™ end

= (ValBind ;)* Exp

MatchCase
nm= { Pat => Scope }

Pat
SimplePat

| Conld SimplePat™
| SimplePat : : SimplePat
| (SimplePat (, SimplePar)*)

SimplePat
== Valld

The grammar as written has some ambiguities, which are resolved by specifying the precedence
and associativity of operators.

For types, the —> constructor associates to the right and has lower precedence than the tuple-type
constructor (*). Type abstraction has the lowest precedence.

Conditional expressions have the lowest precedence, followed by infix binary expressions. For
binary expressions, all operators are left associative, except the infix list cons operator : :, which is
right associative. Binary operations are groups into five precedence levels from lowest to highest as
follows:

e relational operators: ==, <, and <=

e list operator: : :

string operator: @

addition operators: + and —

multiplication operators: *, /, and %

To understand how to apply the precedence of productions to resolve ambiguity, consider two
productions for Exp. such that the first ends with an Exp and the second starts with an Exp:

Exp
= if Exp then Exp else Exp
| Exp+Exp

Suppose that we must parse the sequence:

-if ... then :. - elseExp+ ---

where Exp stands for a token sequence that has already been determined to be an Exp (if necessary,
by applying precedence and associativity resolution). The higher precedence of the Exp + Exp
production dictates that the sequence should be parsed as:

- if --- then --- else (Exp+ ---) correct

and not as:
(«--if --- then --- elseExp)+ --- incorrect

The latter parse requires explicit parentheses.

The associativity of keywords and operators resolves ambiguity among productions of the same
precedence. Suppose we must parse the sequence:

<o Expy 11 Expy :: Expg - --

where Exp,, Exp,, and Exp; stand for token sequences that has already been determined to be Exps.
The right associativity of the : : operator dictates that the sequence should be parsed as:

- Expy :: (Expy :: Expg) -+ correct

and not as:
-+ (Expy :: Expy) :: Expg -+ incorrect

The latter parse requires explicit parentheses.

Here are some more examples:

if bl then x if bl then x
else if b2 then y = else (if b2 then y
else z + w else (z + w))
a+b*xc+d = (a + (b » c)) + d
"i =" @ intToString i @ "\n" = ("i_=_" @ (intToString i)) @ "\n"
[al[P] a => b => a * b = [a]l ([P] (a => (b => (a * D))))
fst [Integer] [Bool] 1 False = (((fst [Integer]) [Bool]l) 1) False

[al] a => [b] b => a * b [al] (a => ([b] (b => (a * D))))

4 Errors

ML-Antlr utilizes a parsing algorithm that integrates automatic error repair. Hence, your parser
specification need not explicitly support error reporting. ML-Antlr does support declarations for
improving error recovery, which you are welcome to include in your specification. The automatic
error repair mechanisms require that semantic actions be free of significant side effects, because er-
ror repair may require executing a production’s semantic action multiple times. All of the functions
in the ParseTree structure are pure; thus, they may be freely used in semantic actions.

In order to support error reporting in the type-checker (to be implemented in Project 3), the
abstract parse tree must be annotated with position information. Therefore, each node in the parse
tree is constructed with a source span that pairs the left and right source positions of the node.
For example, you might have the following rule for matching a constant as an AtomicExp in your
grammar:

AtomicExp : NUMBER
=> (PT.ExpMark{span = NUMBER_SPAN, tree = PT.IntExp NUMBER}) ;
Source positions and spans of terminals are provided by the scanner. Consult the ML-LPT manual
for information for more information about source positions and accessing position information in
semantic actions.

5 Extra Credit: Integrating a Hand-Written Scanner

For extra credit, you may choose to adapt your hand-written scanner from Project 1 for use in
Project 2. To do so, you will need to add support for the % operator that was omitted from the

Project 1 description. You will also need extend your implementation to include position informa-
tion for tokens. You should copy your Project 1 code into your Project 2 directory and rename your
FLangLex structure to FLangHandScanner. Remember to add your source code to the svn
repository and to the sources.cm file! You will also need to modify it to match the following
signature:

signature FLANG_HAND_SCANNER =

sig
val lexer : {
getPos : 'strm -> Error.pos,
forward : Error.pos % int => Error.pos,
reportErrorAt : Error.pos * string —=> unit
} => (char, ’strm) StringCvt.reader
—-> (FLangTokens.token *x Error.span, ’strm) StringCvt.reader
end

Note that 1exer is now a function that takes a character reader and returns a (token * span) reader.
To support position information and error reporting, the FLangHandScanner. lexer function takes
an initial record argument with the following components:

® a getPos : ’'strm —> Error.pos function for querying the current position of the input
character stream,

® a forward : Error.pos * int —> Error.pos function for computing the position n char-
acters forward from a given position, and

® areportErrorAt : Error.pos % string —-> unit function for reporting an error at a given
position.

Figure 1 sketches how a hand-written scanner should use getpos to get the left position of a token
and forward to compute the right position of a token.

The project seed code includes a file flang-hand-lexer.sml that wraps your scanner
(i.e., the FLangHandScanner module) with an interface that is compatible with the ML-Antlr
generated parser. If you choose to use your Project 1 scanner, then you will need to include this file
in your sources.cmn file (and omit the flang. lex file).

Document History

February 5, 2015 Fixed typo in rule for Scope.
February 5, 2015 Fixed typo in syntax of tuple expressions.

February 5, 2015 Fixed small typos in grammar (7yParams should be TypeParams and Expr should
be Exp).

January 31, 2015 Fixed typo in grammar rule for TypeParams.

January 25, 2015 Fixed type of lexer in FLANG_HAND_SCANNER signature and example code.
Also added another example of precedence rules and fixed a typo.

January 23, 2015 Original version

fun lexer {
getPos : ’'strm -> Error.pos,
forward Error.pos x int -> Error.pos,

reportErrorAt Error.pos x string —=> unit

}

(getc : (char, ’strm) StringCvt.reader)

(FlangTokens.token » Error.span, ’strm) StringCvt.reader = let

fun scan strmO let
val posO = getPos strm0
in
case getc strm0
of NONE => NONE
| SOME (#"+", strml) =>
SOME ((T.PLUS, (pos0O, forward (posO, 1))),

strml)
I

| SOME (c, strml) => if Char.isUpper c then
else if Char.isLower c then
else if Char.isDigit c then
else (
reportErrorAt (posO, concat][

"bad,_character_’'", Char.toString c, "’"
1);
scan strml)
(» end case #*)
end

in
scan
end

Figure 1: Skeleton hand-written scanner with position information

