
CMSC 22610
Winter 2015

Implementation of
Computer Languages I

Project 1
January 9, 2015

Flang lexer
Due: January 23, 2015

1 Introduction

Your first assignment is to implement a lexer (or scanner) for Flang, which will convert an input
stream of characters into a stream of tokens. While such programs are often best written using a
lexer generator (e.g., ML-ULex or Flex), for this assignment you will write a scanner from scratch.

2 Flang lexical conventions

Flang programs are written using the ASCII character set. The scanner is responsible for converting
a sequence of ASCII characters (i.e., a source file) into a sequence of tokens. There are five classes
of tokens in Flang:

1. lower-case identifiers: a, b, toString, y23, etc.

2. upper-case identifiers: X, Foo, SOME_VAL, etc.

3. numbers: 0, 42, etc.

4. strings: "hello world", "some\ntext", etc.

5. delimiters and operators: (,), =, <=, +, etc.

Tokens can be separated by whitespace and/or comments.

Type-variable, type-constructor, data-constructor, and value identifiers in Flang can be any
string of letters, digits, underscores, and quote marks, beginning with a letter. Identifiers are case-
sensitive (e.g., foo is different from Foo). We use distinguish between identifiers that begin with
an upper-case letter and those that begin with lower-case letters. We use upper-case identifiers for
type and data constructors, and lower-case identifiers for type and value variables. The following
lower-case identifiers are reserved as keywords:

case con data else end
fun if let of then
type with

Flang also has a collection of delimiters and operators, which are the following:

() [] { }
= == <= < : ::
@ + - * / ,
; -> => _

Numbers in Flang are integers and their literals are written using decimal notation (without a
sign).

String literals are delimited by matching double quotes and can contain the following C-like
escape sequences:

\a — bell (ASCII code 7)
\b — backspace (ASCII code 8)
\f — form feed (ASCII code 12)
\n — newline (ASCII code 10)
\r — carriage return (ASCII code 13)
\t — horizontal tab (ASCII code 8)
\v — vertical tab (ASCII code 11)
\\ — backslash
\" — quotation mark

A character in a string literal may also be specified by its numerical value using the escape sequence
‘\ddd,’ where ddd is a sequence of three decimal digits. Strings in Flang may contain any 8-bit
value, including embedded zeros, which can be specified as ‘\000.’

Comments may start anywhere outside a string with “(*” and are terminated with a matching
“*)”. As in SML, comments may be nested.

Whitespace is any non-empty sequence of spaces (ASCII code 32), horizontal or vertical tabs,
form feeds, newlines, or carriage returns. Any other non-printable character should be treated as an
error.

3 Requirements

Your implementation should include (at least) the following two modules:
structure FLangLex : FLANG_LEXER
structure FLangTokens : FLANG_TOKENS

The signature of the FLangLex module is
signature FLANG_LEXER =

sig
val lexer : ((char, ’a) StringCvt.reader)

-> (FLangTokens.token, ’a) StringCvt.reader
end

The StringCvt.reader type is defined in the SML Basis Library as follows:
type (’item, ’strm) reader = ’strm -> (’item * ’strm) option

A reader is a function that takes a stream and returns a pair of the next item and the rest of the stream
(it returns NONE when the end of the stream is reached). Thus, lexer is a function that takes a
character reader and returns a token reader.

2

We will post a file flang-tokens.sml on Piazza that you may include in your project. It
defines the FLANG_TOKENS signature, has the following form:
signature FLANG_TOKENS =

sig
datatype token
= KW_case (* "case" *)
| KW_con (* "con" *)
| KW_data (* "data" *)
| KW_else (* "else" *)
| KW_end (* "end" *)
| KW_fun (* "fun" *)
| KW_if (* "if" *)
| KW_let (* "let" *)
| KW_of (* "of" *)
| KW_then (* "then" *)
| KW_type (* "type" *)
| KW_with (* "with" *)
| LP (* "(" *)
| RP (* ")" *)
| LB (* "[" *)
| RB (* "]" *)
| LCB (* "{" *)
| RCB (* "}" *)
| EQ (* "=" *)
| EQEQ (* "==" *)
| LTEQ (* "<=" *)
| LT (* "<" *)
| COLON (* ":" *)
| DCOLON (* "::" *)
| AT (* "@" *)
| PLUS (* "+" *)
| MINUS (* "-" *)
| TIMES (* "*" *)
| DIV (* "/" *)
| COMMA (* "," *)
| SEMI (* ";" *)
| ARROW (* "->" *)
| DARROW (* "=>" *)
| WILD (* "_" *)
| UID of Atom.atom (* upper-case identifiers *)
| LID of Atom.atom (* lower-case identifiers *)
| NUMBER of IntInf.int (* integer literals *)
| STRING of string (* string literals; argument does not

* include enclosing quotes *)
end

The tokens correspond to the various keywords, delimiters and operators, and literals. The LID
(resp. UID) token is for non-reserved lower-case (resp. upper-case) identifiers and carries a unique
string representation of the identifier. The NUMBER and STRING tokens carry the value of the
literal.

4 Submission

This project is due at 10pm on Friday, January 23rd. You should submit your code by committing
it to your phoenixforge svn repository. Please put your code into a directory called “proj1.”

3

5 Document history

January 14, 2015 Removed EOF token from description.

January 8, 2015 Original version.

4

