CMSC 22610 Winter 2015

Implementation of Computer Languages

Homework 3 Due February 10

This homework assignment is a written assignment that should be turned in at the beginning of class on Tuesday February 10.

1. (a) Consider the grammar $G = \langle \mathcal{N}, \mathcal{T}, S, \mathcal{P} \rangle$, with nonterminal symbols $\mathcal{N} = \{S, B, D, E, F\}$, terminal symbols $\mathcal{T} = \{\mathbf{x}, \mathbf{y}, \mathbf{w}, \mathbf{u}, \mathbf{v}, \mathbf{z}\}$, and \mathcal{P} consisting of the following productions:

$$S \rightarrow \mathbf{u} B D \mathbf{z}$$

$$B \rightarrow B \mathbf{v}$$

$$B \rightarrow \mathbf{w}$$

$$D \rightarrow EF$$

$$E \rightarrow \mathbf{y}$$

$$E \rightarrow \varepsilon$$

$$F \rightarrow \mathbf{x}$$

$$F \rightarrow \varepsilon$$

Calculate First and Follow for G.

- (b) Construct the LL(1) parsing table for the above grammar.
- (c) Is the grammar LL(1)?
- 2. Translate the following regular expressions into a context free grammar:

(a)
$$(ab^*a) | (ba^*b)$$

(b)
$$(0 | 1)^+(.(0 | 1)^+)^?$$
 (here "." is a terminal symbol).

3. Consider the following grammar:

$$E \rightarrow U$$

$$\rightarrow U+E$$

$$\rightarrow$$
 U – E

$$U \rightarrow A$$

$$\rightarrow$$
 $-U$

$$A \rightarrow (E)$$

$$ightarrow$$
 num

(a) What are the associativities of + and - in this grammar?

- (b) Draw the *derivation tree* for 1+2--3.
- 4. Give an LL(1) grammar for this language that preserves the associativity and precedence of the operators.