
CMSC 22620/32620
Spring 2015

Implementation of
Computer Languages II

Handout 1
March 31, 2015

Project Overview

1 Introduction

The project for the course is to implement a small functional programming language, called Flang.
(Students who have taken CMSC 22100 should recognize it as an enrichment of System F, the
polymorphic λ-calculus.) The project will be divided into five parts:

1. Extending the front-end with non-local control flow, mutually recursive data type and function
definitions, and GADTs.

2. Converting the typed AST to the LambdaIR representation.

3. Generating LLVM assembly code.

4. LambdaIR contraction.

5. LambdaIR analysis and optimizations.

Each part of the project builds upon the previous parts, but we will provide reference solutions
for previous parts. You will implement the project in the Standard ML programming language and
submission of the project milestones will be managed using Phoenixforge.

1.1 Schedule

The tentative schedule for the project assignments is as follows:

Assigned Project description Due date
April 1 Extending the Flang Front End Wednesday, April 15
April 16 Conversion to LambdaIR Monday, April 27
April 28 Basic LLVM Code Generation Monday, May 11
May 12 LambdaIR Contraction Monday, May 25
May 21 More LambdaIR Optimizations Wednesday, June 10

All project assignments will be due at 10pm.

2 Flang

Flang is a strongly-typed, call-by-value, higher-order, polymorphic, functional programming lan-
guage. The syntax and semantics of Flang are similar to other functional programming languages

(e.g., Standard ML, Haskell), but with many simplifications and a more explicit type system. Flang
does not have type inference, exceptions, references, or a module system. Flang does have first-
class functions, datatypes, and first-class polymorphism.

This document specifies the concrete syntax of Flang and gives an informal description of
its features. A companion document (The Flang Type System) gives a formal description of the
language’s type system.

2.1 Types

Flang supports two primitive types of values: integers (type Integer) and strings (type String).
In addition, Flang has datatype-constructed values, function values, and type-function values. The
grammar of types is

Type
::= TypeParams Type
| Type -> Type
| Type (* Type)+

| TyId TypeArgsopt

| TyVar
| (Type)

TypeParams
::= [TyVar (, TyVar)∗]

TypeArgs
::= [Type (, Type)∗]

Flang enforces the convention that type constructor names (TyId) begin with an upper-case letter
and that type variable names (TyVar) begin with a lower-case letter. The -> constructor associates
to the right and has lower precedence than the tuple-type constructor (*), while type abstraction has
the lowest precedence. Some examples:

Integer -> Integer
[a] a -> a
([a] a -> String) -> [a] List[a] -> String
Integer * Integer -> Bool

In addition to Integer and String, Flang predefines several data types, such as Bool, List,
and Unit.

2.2 Programs

A Flang program is a sequence of top-level definitions followed by an expression.

Program
::= (Definition ;)∗ Exp

Executing a Flang program means evaluating each of the declarations (making their definitions
available to the subsequent declarations and expression) and then evaluating the final expression.
Here is a very simple Flang program that computes 5! by defining the fact function followed by

2

the expression fact 5:

(* program declarations *)
fun fact (n : Integer) -> Integer =

if n == 0 then 1 else n * fact (n - 1);
(* program expression *)
fact 5

Note that a (* is used to start a comment and *) is used to terminate a comment; as in SML,
comments may be nested.

2.3 Top-level definitions

There two kinds of top-level definitions in Flang: definitions of types and definitions of values.
Type definitions are further divided into simple type definitions that are used to define a synonym
(or alias) for a type and data-type definitions that are used to define data structures, while value
definitions include function definitions, let bindings, and expressions.

Definition
::= type TyId TypeParamsopt = Type
| data DataDef (and DataDef)∗

| ValBind

ConDef
::= con ConId (of Type)opt

ValBind
::= fun FunDef (and FunDef)∗

| let SimplePat (: Type)opt = Exp
| Exp

FunParam
::= TypeParams
| (ValId : Type)

We describe these various forms below.

2.3.1 Simple type definitions

A Flang type declaration introduces another name for a type; the new type name may be used in
subsequent declarations and expressions. For example, we might wish to abbreviate the type of a
curried integer comparison function (a function from two integers to a boolean):

type IntCmp = Integer -> Integer -> Bool

Note that a type declaration is introduced with the type keyword and that type names are written
with a leading upper-case letter.

A Flang type declaration may also include type parameters, which must be instantiated at each
use of the new type name. For example, we might wish to abbreviate the type of a general compar-
ison function (a function from two values of the same (but any) type to a boolean) and then define
the type of an integer comparison function in terms of the general comparison function:

3

type Cmp [a] = a -> a -> Bool
type IntCmp = Cmp [Integer]

Note that type parameters and type arguments are written in [. . .] brackets and, as in function pa-
rameters, that type variables are written with a leading lower-case letter. Multiple type parameters
and type arguments are separated by ,s:

type BinOp [’a, ’b] = ’a -> ’a -> ’b
type Cmp [’a] = BinOp [’a, Bool]
type IntCmp = Cmp [Integer]

Unlike polymorphic functions, a type name cannot be partially applied; at every use of the type
name, all type parameters must be instantiated.

2.3.2 Data-type definitions

A Flang datatype declaration introduces a new type along with constructors; the constructors pro-
vide the means to create values of the new type and to take apart values of the new type. Each
constructor is declared with the types of its argument(s). A very simple datatype declaration is one
for defining the relationship between values in a total order:

data Order with
con Less
con Equal
con Greater

This definition introduces both new type (Order) and three data constructors (Less, Equal, and
Greater). Note that constructor names are written with a leading upper-case letter. A slightly
more complicated datatype declaration is one that represents publications, which can be either a
book (with an author and a title) or an article (with an author, a title, and a journal name):

data Publication with
con Book of String * String
con Article of String * String * String

A Flang datatype declaration may also include type parameters (yielding a polymorphic datatype),
which must be instantiated at each use of the new type name. The types of a constructor’s argu-
ments(s) may use the type parameters. For example, the Pair datatype takes two type parameters
and introduces a constructor with two arguments of the types of the parameters:

data Pair [a, b] with con Pair of a * b

As in SML, data type definitions may be joined by the “and” keyword, which allows them to
be mutually recursive. For example

data Tree [a] with
con EmptyT
con Forest of (a * Forest[a])

and Forest [a] with
con EmptyF
con Tree of Tree[a] * Forest[a];

4

2.3.3 Function definitions

Function definitions introduce functions that are parameterized over types and values. Functions
may be recursive, but Flang does not support mutually recursive functions directly. For example,
here is a recursive function that computes the length of a list:

fun length [a] (xs : List[a]) -> Integer =
case xs of
{ _::r => 1 + length [a] r }
{ Nil => 0 }
end

A defining characteristic of Flang (taken from System F, the polymorphic λ-calculus) is poly-
morphism or type abstraction. The prototypical example of a polymorphic function is the identity
function, which simply returns its argument (without performing any computation on it). Thus, the
behavior of the function is the same for all possible types of its argument (and result). The function
declaration for the identity function introduces one function parameter (a type variable) to be used
as the type of the second function parameter and the result type:

fun id [a] (x : a) -> a = x;

Note that type variables are written with a leading lower-case letter.

Like (ordinary) functions, polymorphic functions in Flang are first-class: they may be nested,
taken as arguments, and returned as results. To use a polymorphic function, it must be applied
to a type, rather than to an expression. The result of applying a polymorphic function to a type
is a value having the type produced by instantiating the type variable with the applied type. For
example, the result of applying the identity function to the integer type is a function having the type
Integer ->Integer:

fun id [a] (x : a) -> a = x;
let _ : [a] a -> a = id;
let _ : Integer -> Integer = id [Integer];
let zero : Integer = id [Integer] 0;

Note that the polymorphic function type is written using the syntax

[TyVar, . . ., TyVar] Type

Also note that the type variable in a function parameter and in a polymorphic function type is a
binding occurrence of the type variable; two polymorphic function types are equal if each of the
bound type variables in one can be renamed to match the bound type variables in the other:

fun id [a] (x : a) -> a = x;
let _ : [b] -> b -> b = id;
let _ : [c] -> c -> c = id;

In function declarations, type variable and value parameters may be mixed, but a type variable
parameter must occur before any use of the type variable in the types of value parameters.

fun revApp [a] (x : a) [b] (f : a -> b) -> b = f x;
let _ : [b] (Integer -> b) -> b = revApp [Integer] 1;
fun double (y : Integer) -> Integer = 2 * y;
let two = revApp [Integer] 1 [Integer] double;

The above examples also demonstrate that a function with more than one parameter (either type

5

variable parameters or value parameters) is a curried function and can be partially applied to types
or expression arguments.

As in SML, mutually recursive functions are joined by the “and” keyword. For example,

fun isEven (n : Integer) -> Bool =
n == 0 || isOdd (n - 1)

and isOdd (n : Integer) -> Bool =
if n == 0 then False else isEven (n - 1);

2.3.4 Value definitions

In addition to function definitions, Flang allows let binding of value identifiers and expressions1

as top-level definitions. Let bindings introduce new value identifiers that are bound to the result of
evaluating the right-hand-side expression.

2.4 Expressions

Flang is an expression language, which means that all computation is done by expressions (there
are no statements). Furthermore, Flang is a call-by-value language, which means that (almost) all
sub-expressions are evaluated to values before the expression itself is evaluated.

2.4.1 Conditionals

Flang provides a conditional expression with the syntax

if Exp then Exp else Exp

and the expected semantics. The conditional must have the builtin type Bool and the arms of the
conditional must have the same type. The conditional expression is the lowest-precedence expres-
sion form.

2.4.2 Binary expressions

Flang defines a small collection of infix binary operators as described in the following table:
1Expressions can be thought of as a degenerate form of value binding.

6

Operator Associativity Description
|| Left or-else conditional expression
&& Left and-also conditional expression
== Left integer equality relation
< Left integer less-than relation
<= Left integer less-than-or-equal relation
:: Right list cons operator
@ Left String concatenation operator
+ Left Integer addition operator
- Left Integer subtraction operator
* Left Integer multiplication operator
/ Left Integer division operator
% Left Integer modulo operator

The operators are listed in order of increasing precedence, with horizontal lines separating the dif-
ference precedence levels.

Note that the two conditional operators (|| and &&) are not strict in their second argument. In
fact, they may be viewed as defining the following syntactic sugar:

e1 || e2 ⇒ if e1 then True else e2
e1 && e2 ⇒ if e1 then e2 else False

2.4.3 Application

There are two forms of application expressions in Flang: value application and type application.
Both of these forms associate to the left and have higher precedence than binary operators. For
example:

id [Integer] 0
foldl [Integer, Integer]
fact (n-1)
reverse [Bool * Bool] ((True, False) :: (False, True) :: Nil[Bool * Bool])

2.4.4 Variables and constants

Variables, data constructors, numbers, and string literals are all expressions in Flang.

2.4.5 Tuple expressions

Flang supports tuples of values using the syntax

((Exp (, Exp)∗)opt)

The expression () is shorthand for the Unit constructor; the expression (e) is just the expression
e, where the parentheses have been used to make precedence and associativity explicit; and the
expression (e1, e2, . . ., en) defines an n-ary tuple.

7

2.4.6 Blocks

A block introduces a nested scope that can include function and value bindings and has the syntax

{ Scope }

where a Scope is a sequence of value bindings followed by an expression

(ValBind ;)+ Exp

Flang follows standard lexical scoping rules: bound identifiers have a scope that consists of the
rest of the block (the scope of a function includes its body), but subsequent definitions of the same
identifier will override (or shadow) the outer definition.

2.4.7 Case expressions

Flang provides case expressions with simple (one-level) patterns. For example, the body of the
reverse function from above is a case on a list:

case xs of
{ _::r => 1 + length [a] r }
{ Nil => 0 }
end

Note that polymorphic constructors in patterns are not applied to types, since one can use the ar-
gument type of the case to determine how to instantiate the polymorphism. Each rule of the case
consists of a pattern, which may bind variables, and a Scope consisting of bindings and an expres-
sion.

2.4.8 Non-local control flow

Flang supports non-local control via two constructs: the catch expression, which encloses a com-
putation with a handler, and the throw expression, which transfers control to the dynamically
innermost handler. The catch expression has the syntax

try Exp catch { SimplePat => Scope }

and wraps the evaluation of the expression with a handler.

A non-local transfer of control is initiated by the throw expression, which has the syntax

throw [Type] Exp

and which evaluates the string-valued expression Exp and then transfers control to the innermost
handler. The argument is matched against the pattern of the handler. Since the throw expression
does not return to its context, we must specify its type, which is the rôle of the type argument.

A non-local transfer of control can also be caused by the operators / and %, when their second
argument is 0.

8

3 The collected grammar of Flang

3.1 Lexical issues

There are five classes of tokens in Flang:

1. lower-case identifiers: a, b, toString, y23, etc.

2. upper-case identifiers: X, Foo, SOME_VAL, etc.

3. numbers: 0, 42, etc.

4. strings: "hello world", "some\ntext", etc.

5. delimiters and operators: (,), =, <=, +, etc.

Tokens can be separated by whitespace and/or comments.

Type-variable, type-constructor, data-constructor, and value identifiers in Flang can be any
string of letters, digits, underscores, and quote marks, beginning with a letter. Identifiers are case-
sensitive (e.g., foo is different from Foo). We use distinguish between identifiers that begin with
an upper-case letter and those that begin with lower-case letters. We use upper-case identifiers for
type and data constructors, and lower-case identifiers for type and value variables. The following
lower-case identifiers are reserved as keywords:

and case catch con data
else end fun if let
of then throw try type

with

Flang also has a collection of delimiters and operators, which are the following:

() [] { }
= || && == <= <
: :: @ + - *
/ % , ; -> =>
_

Numbers in Flang are integers and their literals are written using decimal notation (without a
sign).

String literals are delimited by matching double quotes and can contain the following C-like
escape sequences:

\a — bell (ASCII code 7)
\b — backspace (ASCII code 8)
\f — form feed (ASCII code 12)
\n — newline (ASCII code 10)
\r — carriage return (ASCII code 13)
\t — horizontal tab (ASCII code 8)
\v — vertical tab (ASCII code 11)
\\ — backslash
\" — quotation mark

9

A character in a string literal may also be specified by its numerical value using the escape sequence
‘\ddd,’ where ddd is a sequence of three decimal digits. Strings in Flang may contain any 8-bit
value, including embedded zeros, which can be specified as ‘\000.’

Comments may start anywhere outside a string with “(*” and are terminated with a matching
“*)”. As in SML, comments may be nested.

Whitespace is any non-empty sequence of spaces (ASCII code 32), horizontal or vertical tabs,
form feeds, newlines, or carriage returns. Any other non-printable character is treated as an error.

3.2 Grammar

The collected syntax of Flang given below using an extended-BNF format. Literal symbols, such as
keywords and punctuation, are written in a bold fixed-width font, other terminal symbols
are written in roman font, and non-terminal symbols are written in italic font. We use the following
terminal symbols in the grammar:

Terminal Lexical class Description
TyId upper-case identifier type constructor and data types
TyVar lower-case identifier type variable
ConId upper-case identifier data constructor
ValId lower-case identifier value identifier

The collected syntax follows:

Program
::= (Definition ;)∗ Exp

Definition
::= type TyId TypeParamsopt = Type
| data DataDef (and DataDef)∗

| ValBind

DataDef
::= TyId TypeParamsopt with ConDef+

ConDef
::= con ConId (of Type)opt

TypeParams
::= [TyVar (, TyVar)∗]

Type
::= TypeParams Type
| Type -> Type
| Type (* Type)+

| TyId TypeArgsopt

| TyVar
| (Type)

TypeArgs
::= [Type (, Type)∗]

10

ValBind
::= fun FunDef (and FunDef)∗

| let SimplePat (: Type)opt = Exp
| Exp

FunDef
::= ValId FunParam+ -> Type = Exp

FunParam
::= TypeParams
| (ValId : Type)

Exp
::= if Exp then Exp else Exp
| Exp || Exp
| Exp && Exp
| Exp == Exp
| Exp < Exp
| Exp <= Exp
| Exp :: Exp
| Exp @ Exp
| Exp + Exp
| Exp - Exp
| Exp * Exp
| Exp / Exp
| Exp % Exp
| ApplyExp

ApplyExp
::= AtomicExp
| ApplyExp AtomicExp
| ApplyExp TypeArgs
| throw [Type] ApplyExp

AtomicExp
::= ValId
| ConId
| Int
| String
| (Exp (, Exp)∗)
| { Scope }
| case Exp of MatchCase+ end
| try Exp catch { SimplePat => Scope }

Scope
::= (ValBind ;)∗ Exp

MatchCase
::= { Pat => Scope }

11

Pat
::= SimplePat
| ConId SimplePatopt

| SimplePat :: SimplePat
| (SimplePat (, SimplePat)∗)

SimplePat
::= ValId
| _

3.3 Syntactic conventions

The grammar as written has some ambiguities, which are resolved by specifying the precedence and
associativity of operators.

For types, the -> constructor associates to the right and has lower precedence than the tuple-type
constructor (*). Type abstraction has the lowest precedence.

For binary expressions, all operators are left associative, except the infix list cons operator ::,
which is right associative. Binary operations are grouped into seven precedence levels from lowest
to highest as follows:

• or-else operator: ||

• and-also operator: &&

• relational operators: ==, <, and <=

• list operator: ::

• string operator: @

• addition operators: + and -

• multiplication operators: *, /, and %

Document History

March 31, 2015 Original version

12

