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The Flang Type System

1 Introduction

This document provides a formal description of the Flang type system. The type system for Flang
is essentially an enrichment of the System F type system.

2 Syntactic restrictions

There are a number of syntactic restrictions that should be enforced by the type checker. Some of
these are properties that could have been specified as part of the grammar in Project 2, but would
have made the grammar much more verbose. Others are properties that could be specified as part
the typing rules below, but it is easier to specify them separately.

e The type variables in a type or data definition must be distinct.

e The type variables in a type abstraction must be distinct.

e The data-type names in a group of data-type definitions must be distinct.
e The data constructors in a group of data-type definitions must be distinct.
e The names of functions in a group of function definitions must be distinct.

e The value parameter names of a function definition must be distinct, and the name of the
function must not be the same as any of the value parameters.

e The type parameter names of a function definition must be distinct.
e The variables in a pattern must be distinct.
e The patterns in a case expression must be exhaustive and irredundant.

e Integer literals must be in the range [—262, 262 — 1].

The type checker checks these properties and reports an error when they are violated.
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Figure 1: Flang semantic types

3 Flang types

In the Flang typing rules, we distinguish between syntactic types as they appear in the program text
(or parse-tree representation) and the semantic types that are inferred for various syntactic forms.
To understand why we make this distinction, consider the following Flang program:

1 data T with

2 con A of Integer

3 con B;

4 let x : T = 1A 1;

5 data T with

6 con C of Integer

7 con D;

8 let y : T = B;

9 0

This program has a type error at line 8 in the declaration 1let y : T = B, because the type of the
data constructor expression B is the type constructor corresponding to the data declaration at line
1, but the type constraint T is the type constructor corresponding to the data declaration at line 5.
The second data declaration at line 5 shadows the earlier declaration at line 1. In the parse-tree
representation, however, all instances of T correspond to the same type constructor name (that is, as
values of the Atom. atom type.

The abstract syntax of Flang semantic types is given in Figure 1 (and represented by the Type.ty
datatype in the project seed code). The set of semantic types (TYPE) is built from countable sets
of semantic type variables (TYVAR) and semantic type constructors (TYCON). We use 7 to denote
types, a and /3 to denote semantic type variables, and (%) to denote k-ary type constructors. In
the representation, we treat type constants as nullary type constructors, but we will often omit the
empty type-argument list in this document (e.g., we write Bool® instead of Bool(o)[ D.

Each binding occurrence of a type variable (respectively, type constructor) will map to a unique
semantic type variable (respectively, semantic type constructor) in the AST representation of the
program. For example, type checking the data declaration at line 1 will introduce one type con-
structor, say 9%0), and type checking the data declaration at line 5 will introduce a different type
constructor, say 950). The syntax of semantic types mirrors the concrete syntax, with forms for type
abstraction, function types, tuple types, instantiation of type constructors, and type variables.

We use the syntax @ to denote a sequence of bound type variables in the term Va(7) and 7 to denote
a (possibly empty) sequence of types in the term 6(*) [7]. In the case that @ is the empty sequence,
then Va(7) = 7. We write |@| to denote the number of elements in the sequence. The capture-free



substitution of types 7 for variables @ in a type 7’ is written as 7’[a/7].

We consider semantic types equal up to renaming of bound type variables.! That is, we will consider
the semantic types Va(a — o — Bool®) and V(3 — 8 — Bool®) to be equal, whereas
the parse trees corresponding to [a] a —=> a —> bool and [b] b —> b —> bool are not equal,
because they use different type variable names.

4 Flang abstract syntax

The typing rules for Flang are defined over an abstraction of the concrete syntax. We use the
following naming conventions for variables in the abstract syntax:

T € Tyld Type constructor identifiers

t € TyVar Type variable identifiers

C € Conld Data constructor identifiers
f,x € Valld Value identifiers

The grammar, which is given in Figure 2, roughly corresponds to the datatypes defined in the
ParseTree module from Project 2. As with the syntax of semantic types, we use the overbear
notation to denote sequences of syntactic objects (e.g., ¢ to represent sequences of type variables
and typ to represent sequences of types).

binary expressions

5 Environments

The typing rules for Flang use a number of different environments, which are finite maps from
identifiers to information about the identifiers. We write {2z — w} for the finite map that maps x to
w and we write {T — w} for the map that maps elements of the sequence Z to the corresponding
element of the sequence w (assuming that |Z| = |w|). If F and E’ are environments, then we define
the extension of E to be

, [ E'(z) ifzx € dom(E)
(E+ F)(x) = { E(z) otherwise

and we write E W E’ for the disjoint union of E and E’ when dom(F) N dom(E’) = 0 (if the
domains of F and E’ are not disjoint, then F & E’ is undefined).

There is a separate environment for each kind of identifier in the parse-tree representation:

TYVARENV = TyVar — TYVAR type-variable environment
TYCONENV = Tyld = TYCON U (TYVAR* x TYPE) type-constructor environment
DCoONENV = Conld — TYPE data-constructor environment
VARENV = Valld — TYPE variable environment

A type name T can either be bound to a type expression (in a type definition), to a data-type
constructor (in a data definition), or to a primitive type constructor. We use the notation A@ : 7

!'This renaming is called a-conversion.
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Figure 2: Abstract syntax of Flang



to represent a parameterized type definition in the type-constructor environment, and #) to denote
data-type and primitive type constructors.

Since most of the typing rules involve two or more environments, we define a combined environ-
ment.
E € ENV = TYVARENV x TYCONENV x DCONENV x VARENV

We extend the notation on finite maps to the combined environment in the natural way:

(TVE, TCE, DCE, VE) + (TVE', TCE', DCE', VE')
= (TVE + TVE', TCE + TCE', DCE + DCE', VE + VE')

(TVE, TCE, DCE, VE) & (TVE', TCE', DCE', VE')
= (TVEw TVE', TCEw TCE', DCE & DCE', VE w VE')

We also use the kind of identifier in the domain as a shorthand for extending an environment with a
new binding. For example, by convention x € Valld, so we will write E &+ {z — 7} for

(TVE, TCE, DCE, VE + {z — 7})
where E = (TVE, TCE, DCE, VE).

6 Typing rules

The typing rules for Flang provide a specification for the static correctness of Flang programs. The
general form of a judgement, as used in the Flang typing rules, is

Context = Term w» Descr

which can be read as “in Context, Term has Descr.” The context is usually an environment, but
may include other information, while the description is usually a semantic type and/or an (extended)
environment. The different judgement forms used in the typing rules for Flang are summarized in
Figure 3. Formally, the judgments are smallest relation that satisfies the typing rules.

The typing rules for Flang are syntax directed, which means that there is a typing rule for each
(major) syntactic form in the parse-tree representation of Flang programs. For each of the syntactic
forms in the abstract syntax, there is a typing rule written in a natural deduction style.

premiseq tee primise,,

conclusion

where the conclusion will be the typing judgment for the syntactic form in question.

6.1 Programs E = prog » Ok

For a program, we check that it is well-formed (i.e. that the types, expressions, and definitions are
type check).

For a top-level definition, we check the definition and then check the rest of the program using the
enriched environment.

E & def » E’ E'F prog » Ok
E  def prog » Ok




E F prog » Ok type checking a program

E def » E' type checking a definition

F data » TCE determine type constructors

E + data » E’ check data constructors
EFtypw» 1 type checking a type
E,0%) @k con» DCE type checking a data constructor definition
E+ bind » E' type checking a value binding

E + fndef » VE checking function signatures
E I fndef » Ok checking function bodies
E & fnsig » E', T, Tres type checking a function signature
Et expw 1’ type checking an expression
E,7F rulew» 7 type checking a match-case rule
E, 7+ patw» E type checking a pattern

T b spat » E’ type checking a simple pattern

E - scope » T type checking a scope

Figure 3: Typing judgments for Flang

The body of the program is well-formed if it type checks.

EFexpw»r
EF exp» Ok

6.2 Definitions E - def » E'

Type definitions are checked by binding the syntactic type parameters (£) to fresh semantic type
variables (&) and then checking the right-hand-side type expression.

@ are fresh [t|=|a| =k Et{t—a}t-typw»r E'=FE+{T— Aa:T1}
Et+typeT|[t] = typ » E’

Checking a group of mutually recursive data-type definitions requires first constructing a type-
constructor environment that maps the type names to their semantic type constructors and then
checking the data constructors. Note that the use of W in this rule forces the type names and data-
constructor names to be unique.

F data; » TCE; forl <i<n
E' =E+(TCE1¥---wW TCE,)
E'+ data; » DCE;for1 <i<n

E + data data; and --- and data, » E' = (DCE1 ¥ --- & DCE},)

The value binding definition is checked just like a value binding (see Section 6.7).

E & bind » E’
E & bind » E’



6.3 Data definitions (1) F data » TCE

The first pass over a data-type definition yields an environment mapping the type name to its corre-
sponding semantic type constructor.

|t| =k 0 is fresh
- T[%] with cony -+ cony » {T — %)}

6.4 Data definitions (2) E+ data » DCE

The second pass over a data-type definition yields an environment mapping the data-constructor
names to their semantic representation.

a are fresh la| =k E(T) = 6%)
E+{t—a},a0® v con;» DCE;for1 <i<n
E+T[t]withcony --- con, » DCE1 W ---& DCE,,

6.5 Types Etrtypw» T

The typing rules for types check for well-formedness and translate the syntactic types to semantic
types.

Type checking a type-function type requires introducing fresh semantic type variables (&) for the
syntactic type variables (7).

@ are fresh Et{t—a}lttypw»r
E + [T]typ » Va(r)

Type checking a function type requires checking the argument type and the result type.

Ertyp, » 1 E = typy, » 1

EFtyp, — typa » 11 = T

Type checking a tuple type requires checking the component types to form a (semantic) tuple type.

ErFtyp,» 7 EFtyp, »

EFtypyx-- xtyp, » 71 X -+ X T

There are two rules for type checking a type-constructor application, depending on whether the type
constructor identifier corresponds to a type definition or a data definition (or a builtin abstract
type). For type definitions, we check the type arguments and then construct a new (semantic) type
by substituting the 7 for the @.

E(T)=Aa: la| = |typ] Ettypw»T
E+=T[typ] » mr[a/7]




For data definitions (or abstract types), we check the actual (syntactic) type arguments and then
substitute the actual (semantic) type arguments for the formal type parameters to produce a new
(semantic) type.
E(T)=0%  |pl=k Et-fpe7T
EFT[typ] » 6W[7]

Type checking a type variable identifier returns its semantic type variable, as recorded in the envi-
ronment.

t € dom(E)
Ettw» E(t)

6.6 Data constructors E, @, 0% + con » DCE

Checking a data constructor involves checking that its argument type is well-formed.

Ertypw» T
E, @, 0%  Cof typ » {C — Va(r — 0% [a])}

Checking nullify data constructors requires no additional checks.

E,@,0® - Cw» {C— Va(@®[a))}

6.7 Value bindings E - bind » £’

Type checking a group of mutually recursive function definitions involves first checking their sig-
natures to produce a value environment that assigns a type to each of the functions. Then, using that
environment, we check that the function bodies are well typed.

Et fndef,» VE;forl1 <i<n
E'=E+(VE1W-- W VE,)
E't fadef, » Ok for1 <i <n

E + fun fndef, and - - - and fndef, » E’

where ReturnType(7) is the return type of the function.

Type checking a variable binding with a type constraint requires checking that the declared type is
well formed and that the right-hand-side expression has that type.

Ertypw» T Etempw T T+ spat » B’
E - letspat : typ = exp» E+ B’

Type checking an unconstrained variable binding requires checking the right-hand-side expression
and then using the resulting type as the context for checking the simple pattern.

Erempw»r T+ spat » B’
E - let spat = exp» E £ E’




A value binding that is just an expression exp is viewed as syntactic sugar for the binding
let _ : Unit = exp
which is reflected in its typing rule.

EFexpw» Unit®
Etrexpw» E

6.8 Function definitions (1) E & fndef » VE

The first pass over function definitions checks their signatures, which yields a value environment
assigning a type to the functions.

E\ fnsigw» E' T, Trer
Et ffnsig=expw» {f+— 1}

6.9 Function definitions (2) E = fndef » Ok

The second pass checks that the function bodies are well typed and that the declared return type of
the function matches the type of the function body.

E & fnsig » E' T, Trer E' - exp » Ty
E+ f fnsig = exp » Ok

6.10 Function signatures E & fnsig» B\ 7, Tyet

Type checking a function signature produces an environment enriched by the function parameter
bindings, the type of the function, and the function’s return type.

For type parameters, we bind the names to fresh type variables and define the function’s type to be
a type function.

@ are fresh E+{t— a}t fasig» E' T, Trer
E & [t] fnsig » E' Ya(T), Tres

For a value parameter, we check the declared type, bind the name to the type, and define the func-
tion’s type to be a function.

El—typb'r E:f:{[L"—)T}}_fTLSZ.ng/,T/,TreI
E & (x: typ) fnsigw E'\7 = 7' Ty

For the return type of the signature, we check that the type is well formed and return it as both the
function’s type and the return type.

Ertypw»r
EF—typw» E,7,7




6.11 Expressions Etexpw»r

Type checking an if expression requires checking that the condition expression has the boolean
type and that the then expression and the else expression have the same type.

Elexp, » Bool? El exps» 1 Et&expy» T

E - if exp, then exp, else exp; » T

For list construction, we check that the right-hand-side expression has a list type and that the left-
hand-side expression’s type matches the element type of the list.

EtFexmpy» T E + expy » List™M[ 7]

EF expy :: expy » List W[ 7]

Application of a function requires checking both expressions and checking that the function expres-
sion has a function type whose domain is the same as the type of the argument expression.

Etemp, w1 — 7 EF expy » 7'

E & exp;expy» T

For application of a type function, we check that the function expression has a type-function type and
that the argument types are well-formed. The type of the application expression is the substitution
of the (semantic) type argument for the abstracted type variable in the result type.

E + exp » Va(r) Ettypw» 7 || = [typ|
E & exp[typ] » T[a/7]

Checking a tuple expression involves checking each of the subexpressions.

Erexp,»rforl<i<n

E+ (expy, ..., exp,) » T1 X -+ X Ty

The rules for type checking the body of a nested scope are given below in Section 6.15. The resulting
type is the type of the expression.

E | scope » 7
E {scope}w» T

The rule for match cases first checks the type of the argument expression and then uses that type to
check each of the rules.

Erexpwr E, 7k rule;» 7' for1 <i<n

E |- case exp of ruley - -- rule, » 7’

Type type of a try-catch expression is the type of its body, which must match the type of the
handler. The pattern in the handler has type String®.

Erexpw»t E, String(o) F rule » 7

E F try exp catch rule » 7

10



The throw expression has the type that it is applied to; its value argument must be a string.

EFtypw»r EFexpw» String(o)

E I throw [typ] exp » T

Variables are mapped to their type in the environment.
x € dom(E)
Erzw» E(x)
Like variables, data constructors are mapped to their type in the environment.
C € dom(E)
EFCw» E(C)

To type check literal expressions, we assume a function TypeOf that maps literals to their type (i.e.,
ether Integer(o) or String(o)).

E + lit » TypeOf(lit)

6.12 Match-case rules E, 7+ rule » 7'

Match-case rules combine pattern matching with a scope. To check them, we first check the pattern
against the match-case argument type and then use the resulting environment to check the scope.

E, 7+ pat » E’ E £+ E'\ scope » 7'
E, 7+ {pat = scope} » 1’

6.13 Patterns E, 7 pat » E’

Type checking patterns is done in a context that includes both the environment and the expected type
(or argument type) of the pattern. The result is an environment that binds the pattern’s variables to
their types.

Checking the application of a data constructor to a simple pattern involves checking that the ex-
pected type is a type-constructor application and that the type of the data constructor is a (possibly
polymorphic) function type with a range that matches the type constructor. We check the argument
pattern with an expected type that is the domain of the function type instantiated to the expected
argument types. The result environment is the environment defined by the argument pattern.

r=0W[7F]  E(C)=val" »6P[a)) 7'[@/7]+ spat» E'
E, 7+ C spat » E’

The list-constructor pattern requires that the expected type be a list type. We check that the left-
hand-side pattern is the element type and the right-hand-side pattern is the list type. The result

11



environment is the disjoint union of the environments defined by the argument patterns.

7 = List V[ 7] 7'+ spat, » By T = spaty » Es
E,7F spat :: spaty » Ey £ Ey

A tuple pattern requires that the expected type be a tuple of the same arity. We check each subpattern
in the context of the corresponding type and then union the resulting environments.

T=T1 X+ XTp
7i F spat; » E;for1 <i<n
E, 7t (spaty, ..., spat,) » E’

Checking a nullary constructor requires matching the constructor’s type (which may be polymor-
phic) against the argument type given by the context.

r=0W[7]  E(C)=vae®[a))
E,7=Cw» 0

Simple patterns are checked in a context of the expected type and the resulting environment is the
result of checking the pattern.

T+ spat » B’
E, 7 spat » E’

6.14 Simple patterns T+ spat » E'

Simple patterns are checked in the context of their expected type, which is used to define the result-
ing environment.

Type checking simple patterns yields an environment that binds the pattern’s variable to the context
type.

Tz {z—T1}

For wild-card patterns, the resulting environment is empty.

TH_» 0

6.15 Scopes E + scope » T

Checking a binding extends the environment, which is then used to check the rest of the scope’s
body.

E - bind » E’ E' + scope » T
E F bind scope » T

12



The type of a scope’s body is the type of the last expression.

EFexpw»r
Erexpw»r

7 Predefined identifiers

Flang programs can use a number of predefined types, constructors, operators, and functions. This
section details the types for these.

7.1 Binary operators

The grammar given in Figure 2 does not include a form for infix binary operators. Instead, we
treat the expression exp; © exp, as shorthand for ® (exp;, expsy). The binary operators have the
following types:

Bo0l® x Bool® — Bool®
Bool® x Bool® — Bool®

or-else conditional operator

&& and-also conditional operator
== Integer(o) X Integer(o) — Bool® integer equality

<= Integer(o) X Integer(o) — Bool® integer less-than-or-equal

< Integer(ﬂ) X Integer(o) — Bool® integer less-than

Q String(g) X String(o) — String(o) string concatenation

+ Integer(o) X Integer(o) — Integer(o) integer addition

- Integer(o) X Integer(o) — Integer(o) integer substraction

* Integer(o) X Integer(o) — Integer(o) integer multiplication

/ Integer(o) X Integer(o) — Integer(o) integer division

% Integer(®) x Integer(”) — Integer”) integer modulo

Note that the infix list-constructor :

: has its own syntactic form for both expressions and patterns,

along with special typing rules.

7.2 The Flang basis

A Flang program is checked in the context of an initial environment (also known as a basis environ-
ment) Ey that provides predefined type constructors, data constructors, and variables. This initial
environment is defined as follows:

Eo = (TVEy, TCEy, DCEy, VEy)

where
TVE, = {}
Bool + Bool®
Integer Integer(o)
TCE, = List ~ List®
String String(o)
Unit ~ Unit©®
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False — Bool®
Nil ~— Va(ListM[«a])
bCEo = True — Bool®
Unit +~ Unit®
argc +— Unit® — Integer(o)
arg Integer(o) — String(o)
fail +— Va(String® — a)
ignore ~— Va(a — Unit®)
VEy = neg ~ Integer® — Integer®
not ~— Bool® — Bool®
print ~— String(o) — Unit®
size +— String(® — Integer®
\ sub String(o) X Integer(o) — Integer(o) )
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