
2-1

2 Procedural Fractal Terrains
 F. Kenton Musgrave

FractalWorlds.com
musgrave@fractalworlds.com

 www.fractalworlds.com/musgrave

Abstract
These course notes describe the fundamentals of fractal terrain models, with an emphasis
on procedural models. We describe in detail fractional Brownian motion (fBm), the
archetypal random fractal upon which all synthetic terrain models are based. FBm is by
design statistically homogeneous; Nature is not. We discuss non-homogeneous terrain
models based on fBm that begin to evoke the heterogeneity seen in Nature. Domain
distortion in procedural terrain models is invoked to emulate geomorphic effects such as
soft sediment deformation and metamorphism. A "slumping" filter is described to emulate
diffusive erosion converging to an angle of repose. Finally, we note the need for physical
simulation of fluvial and glacial erosion to create context-sensitive fractal features such as
river drainage networks, and the current impracticability of such simulations as compared
to fBm-based models.

2.1 Introduction

Since Richard Voss' classic images of fractal landscapes appeared in Benoit
Mandelbrot's book "The Fractal Geometry of Nature" [2] and elsewhere the computer
graphics community has been fascinated by fractal landscapes. The quality of the "fractal
forgeries of Nature," as Mandelbrot calls them, has steadily improved over the roughly
two decades of their use. I had the great privilege of working closely with Mandelbrot at
Yale from 1987 to 1993. My own doctoral dissertation [3], written during that time,
contributed certain advances to the field, mostly in the area of non-homogeneous fractal
terrain models.

There are two textbooks that cover the topic of fractal terrain models: "The Science of
Fractal Images" [5] and "Texturing and Modeling: A Procedural Approach." [1] The first
covers exhaustively the mathematics behind these models. The second covers the practice
of designing and using such models. As an author of portions of both books, I must refer
you to these texts for detailed treatment of this subject matter. Not only have I and others
done our best to do a clear and exhaustive presentation there, I am also constrained by
copyright law not to reproduce that material here.

Given those constraints, what I will do here is try to convey the intuition of fractal
terrain models. While the fundamentals can seem slippery at first, it turns out that they are
deceptively simple. And simple is good.

If you are more interested in using fractal terrains than in implementing them, you're in
luck: At the time of this writing I have just completed, about three weeks ago, a
comprehensive implementation of almost every terrain model I have ever conceived of and

2-2

shipped them out in MetaCreations' Bryce 4. So if you want to play with terrain models,
or see what a wide variety of them look like, get a copy of Bryce 4. Bryce is aimed at
hobbyists more than professionals, so it is fun to use, too. These and other, more
complex, colorful fractal textures based on the methods described here are also available
as the “Noizes” in MetaCreations’ KPT5 product.

2.2 What is a fractal?

What is a fractal? Let me define a fractal as: a geometrically complex object, the
complexity of which arises through the repetition of some shape over a range of scales.
Note the simplicity and breadth of this definition. This simple, heuristic definition will be
sufficient for our purposes in describing terrains. There are more mathematical definitions,
but they are not useful in this context, so we'll keep to this heuristic definition.

Fractals are common in Nature: mountains, clouds, trees, turbulence, circulatory systems
in plants and animals are fractal, as are a wide variety of more subtle phenomena such as
noise in transistors and fluctuations in river fluxes. Fractal geometry is very powerful—
though not sufficient—for describing the complex forms found in Nature. The geometry
we learned in school, the Euclidean geometry of lines, planes, spheres and cones, describes
very well most man-made objects but it fails utterly when confronted with most natural
phenomena, e.g., mountains, clouds, and lightning. Yet those same phenomena can be
described quite succinctly by fractal geometry. Conversely, fractal geometry has very little
use in describing man-made objects—human artisans rarely have the patience to build the
kind of complexity that characterizes fractals.

Though our heuristic definition of fractals is sufficient, let me explain some of the
mathematical details that we will be using. Fractals have the peculiar property of fractal
dimension, which can have non-integer values such as 2.3. We are all familiar with the
Euclidean integer-valued dimensions: a dimension of zero corresponds to a point, one to a
line, two to a plane, and three to space. The real-valued fractal dimensions, such as 2.3,
provide a continuous "slider" for the visual complexity of a fractal construction. The
whole component of the fractal dimension—the "2" in 2.3—indicates the underlying
Euclidean dimension of the fractal, in this case a plane. The "fractional" part—the ".3" in
2.3—is called the fractal increment. As this part varies from .0 to .999..., the fractal
literally goes from (locally) occupying only its underlying Euclidean dimension, for
instance a plane, to filling some part of the next higher dimension, such as space. It does
this by becoming ever more convoluted, as the value of the fractal increment increases.
For the discussion here, we'll stick to the intuition of fractal dimension as a slider that
makes our terrains rougher or smoother.

The source of the convoluted complexity that leads to this intermediate dimensionality
is, again, simply the repetition of some underlying shape, over a variety of different scales.
I refer to this underlying shape as the basis function. For the mathematically well-defined
fBm, the basis is a sine wave. The basis function can be literally anything, but for the

2-3

fractals described here it is either a variation of Ken Perlin's "noise" function1 or Steve
Worley's Voronoi functions. [7] For now, think of the basis function as providing a kind
of cottage cheese with lumps all of a particular size. We build a fractal from it, simply by
scaling down the lateral size of the lumps, and their height as well, and adding them back
in to the original lumps. We do this several times, and presto! we have a fractal.

To be a little more technical: We refer to the lateral size of the lumps as the frequency of
the function (more specifically, the spatial frequency). The height of the lumps we refer
to as the amplitude. The amount by which we change the lateral size, or frequency, in
each step of our iterative addition process, is referred to as the lacunarity of the fractal.
(Lacunarity is a Latin word meaning "gap". The gap, in this case, is between successive
frequencies in the fractal construction.) In practice, lacunarity is a non-issue, as we almost
always leave it set at a value very close to 2.0. In music doubling the frequency, which is
what a lacunarity value of exactly 2.0 implies, raises a given pitch by exactly one octave;
hence we generally speak of the number of octaves in our fractals—this corresponds to the
number of times we scaled down and added back in, smaller lumps to bigger lumps. The
number of octaves in the fractal determines its bandwidth.

There is a well-defined relationship between the amount by which we scale size and the
amount by which we scale the amplitude. This relationship is what determines the fractal
dimension of our result. Again, I will decline to get any more technical, and refer the
interested reader to "The Science of Fractal Images" [5] for details.

An ordinary fractional Brownian motion (fBm) terrain patch of fractal dimension ~2.1.

1 The version of the noise function I prefer to use has zero crossings (i.e., its value is zero) at lattice
points, and a range of [-1,1]. These properties have specific importance in certain constructions. My
preferred Perlin noise is what Peachey calls gradient noise. [1]

2-4

2.3 Procedural fBm

Let's see exactly how to build the archetypal fractal procedural texture, fBm:

/*
 * Procedural fBm evaluated at "point"; returns value stored in "value".
 *
 * Parameters:
 * "H" is the fractal increment
 * "lacunarity" is the gap between successive frequencies
 * "octaves" is the number of frequencies in the fBm
 * "Basis()" is usually Perlin noise
 */
double
fBm(Vector point; double H, lacunarity, octaves)
{

double value, frequency, remainder, Basis();
int i;
static first = TRUE;
static double exponent_array[MAX_OCTAVES];

/* precompute and store spectral weights */
if (first) {

frequency = 1.0;
for (i=0; i<MAX_OCTAVES; i++) {

/* compute weight for each frequency */
exponent_array[i] = pow(frequency, -H);
frequency *= lacunarity;

}
first = FALSE;

}

value = 0.0;

/* inner loop of spectral construction */
for (i=0; i<octaves; i++) {

value += Basis(point) * exponent_array[i];
point.x *= lacunarity;
point.y *= lacunarity;
point.z *= lacunarity;

} /* for */

remainder = octaves - (int)octaves;
if (remainder) /* add in "octaves" remainder */

/* "i" and spatial freq. are preset in loop above */
value += remainder * Basis(point) * exponent_array[i];

return(value);

} /* fBm() */

Note that most of the above code has to do with initialization, computing and storing the
exponent array for efficiency, and the picayune point of dealing with the remainder of
octaves. The fractal itself is constructed in the six-line inner loop. In practice, I code
this in C++. This has the following advantages: 1) the initialization can be performed in
the constructor, 2) there can be a separate exponent array for each instance of the
function, allowing each instance to have a different fractal dimension, and 3) overloaded
vector operators make the code even more terse and readable.

2-5

This is a generalization of Perlin's original "chaos" function. [6] I have provided new
parameters to control lacunarity (which in most cases can simply be fixed at 2.0, as Perlin
originally did), the fractal increment H, and the number of octaves in the construction.
Also, I've substituted Basis() where Perlin called his noise function. For a completely
general fractal function one can make Basis() a pointer to a function, and pass it as a
parameter. I currently use a table of basis functions, and pass a specific one to each
instance of a fractal function.

We accommodate non-integer values for the octaves to accommodate rendering with
level of detail as used, for instance, in QAEB tracing. [1] Formally, a properly band-
limited fBm seen from a distance of 1.0 would have:

octaves = log2(screen resolution) - 2
or a value of about 6 to 10. The -2 term in this expression has to do with the fact that the
Nyquist limit is 1/2 of the screen resolution, and that the highest frequency in the Perlin
noise function is ~1/2 of the lattice spacing. Then we have 1/2 *1/2 = 1/4 , and
log2 1/4()= −2 . You can use a smaller number of octaves to speed the rendering time of
test images.

The parameter H is equal to 1.0 - [the fractal increment]. It corresponds to the H
described by Voss in The Science of Fractal Images. When H=1, the fBm is relatively
smooth; as H goes to 0, the function becomes more like white noise. Figure 1 shows
traces of the function for various values of H. The underlying Euclidean dimension of the
function is given by the dimensionality of the vector-valued argument point. The code
example has a base dimension of 3; if you write custom noise functions, you can half the
execution time for each dimension you drop. This can be useful when QAEB tracing
terrains, for instance. 4 dimensional basis functions can be useful for animating volumetric
phenomena such as flames.

2-6

Figure 1. Traces of fBm for H varying from 1.0 to 0.0 in increments of 0.2.

2.4 Heterogeneous fBm

The fBm described above is, as well as we can make it, statistically homogeneous and
isotropic. Homogeneous means "the same everywhere" and isotropic means "the same in
all directions". Fractal phenomena in Nature are rarely so simple and well-behaved. For
instance, synthetic fractal mountains constructed with a single, uniform fractal dimension
everywhere have the same roughness everywhere. Real mountains are never like that:
They typically rise out of flatter terrain and have rolling foothills at their feet, not to
mention a host of other complications. For greater realism we desire some more
interesting, heterogeneous fractal functions.

An early conjecture of mine was that valley floors should be smooth, as compared to the
mountains. It occurred to me that this could be accomplished by scaling higher
frequencies in the summation by the value of the previous frequency. Note that this
assumes that the basis function has a range of [0..1] rather than [-1..1]. Since a valley
corresponds to a local minimum in the terrain, I conjectured that a low value of the basis
function at a given frequency would imply a local minimum (valley) in the terrain, and that
therefore all higher frequencies at that place should be damped to keep things locally
smooth. I quickly realized that this reasoning is flawed, as a valley is defined by the local
values of the first and second derivative of the terrain. The first derivative must be small,
indicating that the surface is locally horizontal, and the second derivative must indicate
that we are at a local minimum, rather than a maximum (corresponding to a peak in the
terrain). Fortunately, I didn't figure that out until after I had implemented such a function.
While it does not do what I had intended, it is simple and yields very nice heterogeneous

2-7

terrains nevertheless. For reasons that Mandelbrot does not entirely approve of, I call this
function a "hybrid multifractal."

A hybrid multifractal terrain patch made with a Perlin noise basis: the “alpine hills”
Bryce 4 terrain model. There is a flat ground plane added at altitude zero to mask
details below.

/* Hybrid additive/multiplicative multifractal terrain model.
 *
 * Some good parameter values to start with:
 * H: 0.25
 * offset: 0.7
 */
double HybridMultifractal(Vector point, double H, double lacunarity,

 double octaves, double offset)
{

double frequency, result, signal, weight, remainder;
double Noise3();
int i;
static first = TRUE;
static double *exponent_array;

/* precompute and store spectral weights */
if (first) {

/* seize required memory for exponent_array */
exponent_array =

(double *)malloc(octaves * sizeof(double));
frequency = 1.0;
for (i=0; i<octaves; i++) {

/* compute weight for each frequency */
exponent_array[i] = pow(frequency, -H);
frequency *= lacunarity;

}
first = FALSE;

}

/* get first octave of function */

2-8

result = (Noise3(point) + offset) * exponent_array[0];
weight = result;
/* increase frequency */
point.x *= lacunarity;
point.y *= lacunarity;
point.z *= lacunarity;

/* spectral construction inner loop, where the fractal is built */
for (i=1; i<octaves; i++) {

/* prevent divergence */
if (weight > 1.0) weight = 1.0;

/* get next higher frequency */
signal = (Noise3(point) + offset) * exponent_array[i];
/* add it in, weighted by previous freq's local value */
result += weight * signal;

/* update the (monotonically decreasing) weighting value */
/* (this is why H must specify a high fractal dimension) */
weight *= signal;

/* increase frequency */
point.x *= lacunarity;
point.y *= lacunarity;
point.z *= lacunarity;

} /* for */

/* take care of remainder in “octaves” */
remainder = octaves - (int)octaves;
if (remainder)

/* “i” and spatial freq. are preset in loop above */
result += remainder * Noise3(point) * exponent_array[i];

return(result);
} /* HybridMultifractal() */

Note the offset applied to the Perlin noise function, to move its range from [-1,1] to
something closer to [0,2]. (If your noise function has a different range, you’ll need to
adjust this.) I've successfully used similar heterogeneous fractal constructions with other
basis functions such as one minus the absolute value of Perlin noise, and Worley's Voronoi
bases. The terrain models "ridges," "Mordor," and "shattered hills" in Bryce 4 are
examples of such terrain models.

2-9

The “ridges” terrain model from Bryce 4: a hybrid multifractal made from one
minus the absolute value of Perlin noise.

The “Mordor” terrain model from Bryce 4: a hybrid multifractal made from
Worley’s Voronoi distance-squared basis.

2-10

The “shattered hills” terrain model from Bryce 4: a hybrid multifractal made from
Worley’s Voronoi distance basis. Note the smooth horizontal band in the lower left
around where the value of the first octave was zero. Higher frequencies were heavily
damped there, leading to a lack of detail in the final result. Note also that the creases in
the basis function from the first octave are clearly visible there. This is a clear example
of how the character of the basis function can show through in the final fractal.
Compare this and the previous two illustrations to see more on the affects of the basis
function on the resulting fractalthe fractal construction algorithm is the same for all of
them, but the basis functions are different. This illustrates the importance of the basis
function in determining the “look” of a fractal.

2.5 Warped Terrains: Domain Distortion

Sometimes rock flows, as in deformation of soft sediments prior to lithification and
under the tremendous heat and pressure of metamorphosis and orogenesis (mountain
building). Including these effects can add variety and realism in terrain models.

The basic idea in domain distortion is to add a vector-valued fractal or non-fractal
function to the evaluation point, before passing it to the terrain function. It is basically
simple functional composition, as in g(f(x)). The only trick is that the argument "x" is
vector-valued, i.e., (x,y) or (x,y,z), rather than scalar valued. Thus the distorting function
should also be vector-valued. In practice, I get such a 3-vector from three evaluations of
a scalar valued function, as in:

g(x+f(x,y,z), y+f(x+10,y,z), z+f(x,y+10,z))

2-11

Here is a simple domain-distorted fBm function:

/* Domain-distorted fBm.
 *
 * Some good parameter values to start with:
 *
 * H: 0.25
 * distortion: 0.3
 */
double
WarpedFBm(Vector point, double H, double lacunarity,

 double octaves, double distortion)
{

double Noise3();
Vector tmp, distort;
int i;

/* compute distortion vector */
tmp = point;
distort.x = fBm(tmp);
tmp.x += 10.5;
distort.y = fBm(tmp);
tmp.y += 10.5;
distort.z = fBm(tmp);

/* add distortion to sample point */
point.x += distortion * distort.x;
point.y += distortion * distort.y;
point.z += distortion * distort.z;

return(fBm(point));

} /* WarpedFBm() */
In the above case, we have fBm distorted with fBm. This particular function can be seen
in the "lava" terrain model in Bryce 4. The distortor and distortee functions need not be
the same fractal. I have experimented with a variety of domain distortions in terrain
models: "warped ridges," "warped slickrock," "weathered dikes" and "warped zorch" are
examples appearing in Bryce 4. "Zorch" is a general fractal terrain that is built from a
randomly selected basis function; "warped zorch" is a random terrain distorted by a fractal
built from another randomly-selected basis function. It's fun to see what kind of "looks"
you get from such randomization of basis functions and other fractal parameters.

2-12

A sample of the “lava” terrain model in Bryce 4: fBm distorted with fBm.

A sample of the “warped ridges” terrain model in Bryce 4: the “ridges” model distorted with fBm.

2-13

A sample of the “warped slickrock” terrain model in Bryce 4: fBm constructed from one
minus the absolute value of Perlin noise, distorted with fBm.

An example of the “warped zorch” terrain model in Bryce 4: fBm constructed from some
randomly-selected basis function, distorted by fBm constructed from another randomly-
selected basis function. There is a tremendous variety of possible results in this scheme.

2-14

2.6 Slumping: Forming Talus Slopes

Many terrains are composed of ridges between drainage channels, where the slopes of
the relief are close to a fixed angle of repose or talus slope. Santa Catalina Island off the
coast from Los Angeles, California, is a good example. The terrain is eroded away by
water flowing through the channels. The strength of the substrate only allows it to
support faces up to a certain angle; when this angle is exceeded a landslide occurs,
bringing the face to or below the critical angle. In such terrains, fractal character is
evident in the distribution of the drainage channels and on small scales on the terrain
surface. The faces of the mountains, all at or near a given angle of repose, are not
particularly fractal.

One can emulate the angular character of such terrain by applying a modified low-pass
filter to steeper terrain models. This can be viewed as a physical model of diffusive
erosion. The filter is exactly like a standard low-pass filter, except that the value to which
it converges is not a DC signal but rather, for instance, a slope of 45 degrees. Slopes less
than the angle of repose are unaffected.

It is implemented with code like this:

 delta = [difference of adjacent samples] / [sample spacing]
 talus_moved = delta - talus_slope;
 if (talus_moved > 0.0)
 talus_moved *= diffusion_coeff;
 else
 talus_moved = 0.0;

The value of talus_slope is the derivative of the angle of repose (sign depending on
the sign of delta). The value of diffusion_coeff should be positive but much less
than 1.0; it controls the rate of diffusion.

Applying this filter iteratively to a steep terrain model causes the terrain to "slump"
down to the specified angle of repose.

2-15

Santa Catalina Island, rendered in Bryce from a USGS DEM. Note
the fairly constant angle of the slopes of the terrain.

2.7 Fluvial Erosion

What's missing in the above model is the fractal network of drainage channels between
the ridges created by the slumping filter. We addressed fluvial erosion simulation in a
fairly ad hoc model in 1989. [4] Since then, we have expended much effort in developing
a more physically accurate simulation informed by models from the literature of fluvial
geomorphology.

Here is the bad news: These more accurate models are highly nonlinear and the partial
differential equations one needs to solve for the transport and erosion are particularly
nasty, so the simulations must employ very small time steps to remain stable. This makes
the computational cost prohibitive as we're out to simulate the passage of geologic time,
implying that our simulation needs to work much faster than Nature, which is incredibly
slow and patient in comparison. While this certainly is much faster than Nature, it's still
not fast enough for our purposes in image synthesis. Such simulation also has the
significant drawback of requiring a fixed post spacing in the height field, making LOD
rendering problematic.

As computers get faster and memory cheaper such simulations will become more
feasible. But they are complex, both in the physical model of rainfall, fluid transport,
substrate, erosion and deposition, and in the numerical methods required to solve the
PDEs. The upshot is that, while they will definitely continue to be of interest as the only
known way to create (realistically) the context sensitive fractal drainage networks, they
will remain impractical for the foreseeable future.

Even if we had an efficient working model, users would find the number of parameters
driving the model intimidating. Any somewhat realistic model will have on the order of
100 such parameters. Searching a 100-dimensional parameter space for a desired result is
a very difficult task—particularly when it takes minutes to days to evaluate the results of a
given set of parameter values.

Also, the literature of formal models of fluvial geomorphology generally does not even
address deposition—issues of erosion and transport complicate the models enough,
without addressing deposition. So even our "most accurate" physical model (I use the
quotation marks because these published models have not been confirmed,
computationally) must become ad hoc when including the very important phenomenon of
fluvial deposition.

The most striking feature of the fluvial erosion models is their complexity and
inefficiency, as compared to the fractal terrain generation algorithms, in creating natural
fractals that are to human perception less important in achieving the impression of realism
in synthetic terrain models. That is, we are generally less aware of the fractals in the
drainage networks than in the roughness of the terrain. Mandelbrot always scoffed at my
fluvial erosion models—"Not enough bang for the buck!" he would say. After a few years
of struggling with these physical models, I began to appreciate his point. Now I firmly
believe it is well taken.

2-16

2.8 Conclusions

Terrains are more geometrically complex than we can hope to reproduce with
reasonably elegant and usable models, but the simple complexity of fractals gives us an
initial handle on describing such complexity. As Voss illustrated in the 1970's, fractional
Brownian motion can provide a convincing terrain model, if limited to local models where
the terrain has the same statistics everywhere. The procedural, heterogeneous fractal
models presented here and elsewhere [1] extend the expressive power of fBm without
compromising its elegance. Simulating diffusive erosion is fast and easy. Simulating
fluvial and glacial erosion, probably the most important morphogenic forces besides uplift
acting on terrains, remains impractical.

There is plenty of work yet to be done in developing fractal models of natural
phenomena. Turbulence has yet to be modeled, realistically, more elegantly than by
solving the Navier-Stokes equations. Trees are distinctly fractal, yet subtleties in their
randomness continue to escape us. Similarly, people often say these terrain models "look
so real," yet they actually bear little resemblance to the true form of terrains in Nature
which are both more complex and utterly different in their character, being dominated by
context-sensitive erosion features not captured by fBm-based fractal models. Such
features can be added—only on a local scale—at great cost in intellectual and
programming effort as well as in computation time. But local models are insufficient, and
once again Nature's complexity escapes us.

Our main artistic advantage in this endeavor is people's profound insensitivity to the true
appearance of Nature—we monkeys are easily fooled here. Try simulating the appearance
of human faces, and you are likely to have a very different experience: The human brain
appears like a neural net that is most exquisitely sensitive to the subtleties in that particular
height field. I, for one, am grateful that my personal predilection has been to work at
modeling natural phenomena, where the room for error in "realistic" models is huge. And
besides, the average pretty synthetic landscape is better looking than the average pretty
synthetic face. For the time being.

References
[1] Ebert, D.S., ed. Textures and Modeling: A Procedural Approach. 2 ed. 1998,

Academic Press: Cambridge, MA.
[2] Mandelbrot, B.B., The Fractal Geometry of Nature. 1982, New York: W. H. Freeman

and Co.
[3] Musgrave, F.K., Methods for Realistic Landscape Imaging. 1994, Ann Arbor,

Michigan: UMI Dissertation Services (Order Number 9415872).
[4] Musgrave, F.K., C.E. Kolb, and R.S. Mace, The Synthesis and Rendering of Eroded

Fractal Terrains. Computer Graphics, July, 1989. 23(3): p. 41-50.
[5] Peitgen, H.O. and D. Saupe, ed. The Science of Fractal Images. 1988, Springer-

Verlag: New York.
[6] Perlin, K., An Image Synthesizer. Computer Graphics, July, 1985. 19(3): p. 287-296.

2-17

[7] Worley, S. A Cellular Texture Basis Function. in SIGGRAPH 96. 1996. ACM
SIGGRAPH.

