CMSC 23700 Introduction to Computer Graphics Project 3
Autumn 2015 October 20, 2015

Advanced Lighting Techniques
Due: Monday November 2 at 10pm

1 Introduction

This assignment is the third and final part of the first project. In this part, you will add both sup-
port for richer modeling and for more advanced rendering modes. This assignment builds on your
Project 2 code by adding the following features to your viewer:

e Orientation for objects — objects in the scene description now come with a frame that defines
their orientation in world space.

e Heightfields — these are a compact way of representing terrain meshes (and which figure
prominently in the final project).

e Normal mapping — this is a technique for creating the illusion of an uneven surface by
perturbing the surface normals.

e Shadow mapping — this is a technique for adding shadows to the scene.

You should start by fixing any issues with your Project 2 code.

For extra credit, you can implement a rendering mode that supports both normal mapping and
shadowing.

2 Description

2.1 Scenes

We extend the scene format to support new features. The extensions include adding a shadow factor,
a ground objects, and object frames to the scene . json file, and adding normal maps to the object
materials. We will provide a enhanced version of the Scene class that handles the new features. As
before, your code will use the scene object to initialize your view state and object representations.

The lighting information contains an extra field, shadow, that specifies the darkness of the
shadows. This value is called the shadow factor; see Section 2.5 for details.

Ground objects are represented as height fields (described below in Section 2.3). Each scene
has at most one ground object, which will be specified as a JSON object with the following fields:

"lighting" : {

"direction" : { "x" o, "y" : -1, "z" : 0},
"intensity" : { "r" : 0.8, "b" : 0.8, "g" : 0.8},
"ambient" : { "r" : 0.2, "b" : 0.2, "g" : 0.2},
"shadow" : 0.25
}I
"camera" : {
"size" : { "wid" : 1024, "ht" : 768 1},
"fov" : 120,
"pos" : { "x" : 0, "y" : 3, "z" : -8 },
"look—at" : { "x" : 0, "y" : 3, "z" : 0 },
"up" ¢ { "x" : O, "y" : 1, "z" : 0 }
}I
"ground" : {
"size" : { "wid" : 50, "ht" : 50 },
"yv-scale" : 0.1,
"height-field" : "ground-hf.png",
"coloxr" : { "r" : 0.5, "b" : 0.5, "g" : 0.5 },
"color-map" : "ground-cmap.png",
"normal-map" : "ground-nmap.png"
}I
"objects" : [
{ "file" : "box.obj",
"color"™ : { "r" : O, "D" : 1, "g" : O },
"pos" : { "x" : 0, "y" : 0, "z" : 0 },
"frame" : {
"x-axis" : { "x" : 1, "y" : 0, "z" : -1},
"y-axis"™ : { "x" : 0, "y" : 1, "z" : 0},
"z-axis"™ : { "x" : 1, "y" : 0, "z" : 1}
}

Figure 1: An example scene. json file

1. The size field specifies the width and height of the ground object in world-space units. By
convention, the ground object is centered on the origin.

2. The v—scale field specifies the vertical scale in world-space units.

3. The height—-field field specifies the name of a gray-scale PNG file, which defines the
offsets from the XZ plane.

4. The color field specifies the color used to render the ground object in wireframe, flat-
shading, and diffuse modes.

5. The color—map field specifies a texture image used to render the ground object in texturing
and normal-mapping modes.

6. The normal-map field specifies a texture image used to render the ground object in normal-
mapping model. Note that this file is not the definition of the vertex normals for the ground

mesh.

The other change to the format of the scene. json file is the addition of object frames. A
frame is a JSON object with three fields x—axis, y—axis, and z—axis, that represent the object
space’s basis in world coordinates.

2.2 Object frames

Associated with each object instance in the scene is a frame that defines how the X, Y, and Z axes
are oriented and scaled in world space. For example, the frame (1,0, 0), (0,1, 0), (0,0, 1) specifies
the identity transformation, since the object-space axes coincide with the world-space axes. If we
wanted to rotate an object by 90° around the Y axis (counter-clockwise) and double its height, we
would specify the frame (0,0, —1), (0, 2,0), (1, 0,0). Taking the frame vectors as the columns of a
3 x 3 matrix and combining it with the object’s position, gives an affine transformation for mapping
points in object space to world space. Note that the transformation is not restricted to be isotropic.

2.3 Heightfields

Heightfields are a special case of mesh data structure, in which only one number, the height, is
stored per vertex (height field data is often stored as a greyscale image). The other two coordinates
are implicit in the grid position. If the world-space size of the ground object is wid x ht and the
height field image size is w X h, then the horizontal scaling factors in the X ansd Z dimensions are
given by

wid d e
w1 ¢ =TT
If s, is the vertical scale and H is the height field, then the 3D coordinate of the vertex in row ¢ and
column j is h; ; = (xo + s.J, svH[i, j], 20 + s.i), where the upper-left corner of the height field
has X and Z coordinates of xg and z; (respectively). By convention, the top of the height field is
north; thus, assuming a right-handed coordinate system, the positive X-axis points east, the positive
Y axis points up, and the positive Z-axis points south.

Sy =

Because of their regular structure, height fields are trivial to triangulate; for example, Figure 2
gives two possible triangulations of a 5 x 5 grid. The triangulation on the left lends itself to rendering
as triangle fans, while the triangulation on the right can be rendered as a triangle strip. Rendering
with these primitives reduces the number of vertices that are submitted. For example, rendering
the left triangulation using fans of eight triangles each will reduce the number of vertices by about
45%' But the space savings will be much less when using glElements, since the indices only
account for about 17% of the VAO data. Therefore, we recommend rendering the ground using
GL_TRIANGLES.

Unlike an object specified in an OBJ file, a height field does not come with normal vectors,
so you will need to compute these as part of your initialization. There are a couple of different
ways to compute these normals, but most approaches involve averaging the sum of the normals for
surrounding faces or edges.

"Bach fan of ecight triangles will take 10 indices plus a restart index (see the documentation for
glPrimitiveRestartIndex).

0 0
1 1
2 2
3 3
4 4

Figure 2: Possible height field triangulations

For example, consider the vertex h; ;. It has four neighboring right triangles (A, B, C, and D)
2

for which it is the apex as illustrated in the following diagram:

To compute the vertex normal ni, j for h; ;, we start by computing the four edge vectors radiating
out from h; ;:

e_10 = hi1;—h;
e,—1 = hjj_1—h;
e, = hj;1—hg;
elo = hiyi1j—h;

Note that these triangles are not the ones in the triangulation.

Then we can compute the face normals of the triangles

€p,—1 X €_10

T o1 x el
ng = €p,1 X€_1p0
lleo,1 x e_1 |
ng = €p,—1 X €10
||eo,71 X el,O”
n, = €10 X €0,1
lle1,o x eo1]|

Then the vertex normal is just the average of the triangle normals:

1
n;; = 1 (ng +np+ne+np)

The remaining detail is to remember that for vertices at the corners and edges, we have fewer
adjacent faces.

2.4 Normal mapping

Normal mapping is a technique to simulate the lighting effects of small-scale geometry without
directly modeling the geometry.> A normal map is a three-channel texture that holds normal vectors
in a surface’s tangent space. To use the normal map, we map the light vector to the tangent space
and then dot it with the normal vector at the fragment location. Figure 3 illustrates this process.

2.4.1 Normal maps

We use a three-channel texture to represent the normal vectors on the surface. These normals are
stored in the tangent space of the surface, so to compute the illumination of a fragment, one has
to map the light vector(s) and view vector to the surface’s tangent space.* Specifically, the red and
green channels hold the X and Y components of the normal vector, which should coincide with the
S and T" axes of the texture. The blue channel holds the Z component of the normal. Note that the
normal vectors stored in the normal texture are not unit vectors.

2.4.2 Tangent space

For each vertex pg in the mesh, we want to compute the tangent space at that vertex. Assume that
we have a triangle (pg, p1, p2) with texture coordinates (so, to), (s1,%1), and (sa, t2) (respectively),
and that n is the vertex normal at pg. As mentioned above, we need to map the light vector into the
tangent space of the triangle. The tangent space will be defined by three vectors: the tangent vector
t, the bi-tangent vector b, and the normal vector n. These vectors (taken as columns) define the
mapping from tangent space into object space. When implementing a feature like normal mapping,
it is important to keep the coordinate systems straight. The following picture helps:

3Normal mapping is often called bump mapping, but they are different techniques.
“Note that since we are only implementing diffuse and ambient lighting in this project, the view vector is not required.

a) Uneven surface with
normals

<—— Bump-surface normals

b) Normal mapping the Light vector

triangle’s surface

....................

¢) Illumination levels

Figure 3: Lighting a surface with a normal map. Part (a) shows an uneven surface and its surface
normals; (b) shows the resulting vectors in the triangle’s tangent space, and (c) shows the resulting
illumination levels.

‘ Tangent space ‘ Object space ‘ World space

Lights are usually specified in world coordinates, so they need to be mapped to model space and
then to tangent space.

The tangent space should be chosen such that p; has the coordinates (s; — sg,t; — %, 0) (i.e.,
Po is the origin of the tangent space) Let

u = Pp1—Po object-space vector
V. = P2—Po object-space vector
(up,v1) = (s1— So,t1 —to) tangent-plane coords of p;
(ug,ve) = (s2 — sp,ta —tp) tangent-plane coords of py

as illustrated by this picture

p2 (s2,12)

pl
p() (sl,tl)
(50, 10)

Since t and b form a basis for the texture’s coordinate system (i.e. tangent plane), we have

u = wt+vb
Vv = ugt+uvb

Converting these equations to matrix form gives us:

ul | ur om tT
vi | 7| us vy bt
uyp VU1
u2

1 vy =V ul B tT

ULV — U] | —U2 Uy vIi | 7| bT
The matrix [t b n| maps from tangent space to object space, where n is the normal vector
assigned to pg. If this matrix were guaranteed to be orthogonal, then we could take its transpose to
get the mapping from object space to tangent space that we need. In practice, however, it is likely

to be close, but not orthogonal. We can use a technique called Gram-Schmidt Orthogonalization to
transform it into a orthogonal matrix. Using this technique, we get

Multiplying both sides by the inverse of the [] matrix gives us the definition of the t and

b vectors:

t' = normalize (t — proj,t)
= mnormalize (t — (t - n)n)
b’ = normalize (b — (b-n)n — (b t')t")
"
Finally, we can define the mapping from object space to tangent space tobe | b’ |. Applying
T
n
this transform to the light vector 1 gives us (t'-1, b’-1, n-1), which we can dot with the normal from
the normal map to compute the lighting.

We only need compute the transformed light vector at vertices and then let the rasterizer inter-
polate it across the triangle’s surface.

Also, note that since b’ = +1(n x t’), we only need to store four floats per vertex to define
the mapping from object space into tangent space. In our vertex shader, we set b’ =t/ (n x t;yz),
where t, € {—1,1}.

Object space

@ Model matrix

World space

View matrix @ Light's view matrix
View
eye-space
Light's projection
Projection matrix matrix

Light
clip-space

Light
eye-space

View
cip-space

Figure 4: The coordinate-space transforms required for shadow mapping

To support normal mapping, you will need to compute the vector <t;yz, t/,) for each vertex in
the mesh.

2.5 Shadows

Shadows are one of the most important visual cues for understanding the relationship of objects
in a 3D scene. As discussed in class, there are a number of techniques that can be used to render
shadows using OpenGL. For this project, we will use shadow mapping.

The idea is to compute a map (i.e., texture) that identifies which screen locations are shadowed
with respect to a given light. We do this by rendering the scene from the light’s point of view
into the depth buffer. Then we copy the buffer into a depth texture that is used when rendering the
scene. When rendering the scene, we compute a (s, ¢,) texture coordinate for a point p, which
corresponds to the coordinates of that point in the light’s clipping space. The r value represents
the depth of p in the light’s view, which is compared against the value stored at (s, t) in the depth
texture. If r is greater than the texture value, then p is shadowed. To implement this technique,
we must construct a transformation that maps eye-space coordinates to the light’s clip-space (see
Figure 4). Let

e M, 4. be the model matrix

e M,;.,, be the eye’s view matrix

o M, be the light’s view matrix, and

e Py be the light’s projection matrix.

To map a vertex p to the light’s homogeneous clip space, we first apply the model’s model matrix
(M,04e1), then the light’s view matrix (M), and finally the light’s projection matrix (P,
After the perspective division, the coordinates will be in the range [—1... 1], but we need values
in the range [0. .. 1] to index the depth texture, so we add a scaling transformation (S(0.5)) and a
translation (T'(0.5,0.5,0.5)).

You will need to compute the diffuse (D;) intensity vectors using the techniques of Project 2.
You should also compute the shadow factor S;, which is given by the scene when the pixel is in
shadow and 1.0 otherwise. Then, assuming that the input color is Ci, and L is the set of enabled
lights, the resulting color should be

Cout = clamp <Z SlDl> Cin

lel

2.6 User interface
You will add support for two new commands to the Project 1 user interface:

n N switch to normal-mapping mode

s S switch to shadowed mode

x X switch to eXtreme mode, which includes both normal mapping and
shadows (extra credit).

In addition, your viewer should provide the camera controls that you implemented in Project 1.

Your viewer will support six different rendering modes (seven if you do the extra credit). To
help you keep track of which features are enabled in which mode, consult the following table:

Rendering Polygon Diffuse Normal Shadow
mode mode Color Lighting Texturing mapping mapping
Wireframe (w) GL_LINE v

Flat-shading (f) GL_FILL v

Diffuse (d) GL_FILL v

Textured (t) GL_FILL v v

Normal-mapping (n) GL_FILL v v v

Shadowed (s) GL_FILL v v v
Extreme (x) GL_FILL v v v v

3 Sample code

Once the Project 2 deadline has passed, we will seed a pro j3 directory with a copy of your source
code and shaders from Project 2. We will update this code with a new implementation of the Scene
class. The seed code will also include a new Make file in the build directory and new scenes.

4 Summary

For this project, you will have to do the following:

e Fix any issues with your Project 2 code.

e Modify your Project 2 data structures to support object frames and normal mapping.
e Add support for loading and rendering the ground.

e Write a shader that renders objects using normal maps.

e Write a shader that renders objects with shadows.

e Add support for the new rendering modes to the Ul

e For extra credit, implement an extreme mode that supports both normal mapping and shadows.

5 Submission

We have set up an svn repository for each student on the phoenixforge.cs.uchicago.edu
server and we will populate your repository with the sample code. You should commit the final
version of your project by 10:00pm on Monday November 2. Remember to make sure that your
final version compiles before committing!

History

2015-10-22 Simplified description of bump mapping.

2015-10-16 Original version.

10

