Class News

- Subscribe to the mailing list!
- Homework 3 is due on Feb 15 (11:59pm).
- Second 15 minute in-class quiz next time (6:30pm) on Feb 19.
 - Covers the first five lectures, project submissions and the Gradiance homework.
 - Open book/notes
- Last 15 minute in-class quiz will be on Mar 5.
Dimension Hierarchies

- Many-to-one hierarchies within a dimension are often flattened and presented as a series of attributes in the dimension (i.e. opposite of snowflaking)
- Multiple well-defined hierarchies are often present in one table
 - E.g. marketing and finance departments may have incompatible and different views of product hierarchy – in that case all of the marketing-defined attributes and all of the finance-defined attributes must be present in the detailed master product table
- Hierarchies accommodate drill-paths
 - used for drilling-down and drilling up

Transaction Schemas

- Usually contains a single “fact” – the value of the transaction
- Used to perform analysis in extreme detail
 - Behavior counts (e.g. number of times ATM users make mortgage payments at ATM locations not near their homes)
 - Time-of-day analysis (e.g. number of ATM transactions that occur during the lunch hour)
 - Sequential behavior analysis (used for fraud detection, cancellation warning, etc.)
 - Basket analysis (what products sell in combination with other products)
- Excellent setting for data-mining
Transaction Schema Example

Transaction Dimension
TransactionKey
transaction attributes

Account Dimension
AccountKey
account attributes

Location Dimension
LocationKey
location attributes

Calendar Dimension
CalendarKey
day attributes

ATM Transaction Fact Table
AccountKey (FK)
LocationKey (FK)
CalendarKey (FK)
TransactionKey (FK)
Amount

AccountKey

AccountKey

earned_revenue
transaction_count
ending_balance
avg_daily_balance
...

Snapshot Schema Example

Calendar Dimension
CalendarKey
day attributes

ATM Snapshot Fact Table
AccountKey (FK)
CalendarKey (FK)

AccountKey

AccountKey

...
Snapshot Motivation

• Not all related facts can be *easily* (i.e. quickly) derived from the transaction schema
 – E.g. account transactions vs. the revenue generated by the account
 – It is possible to derive the revenue by crawling through the transactions while taking into account the complex relationships between individual transactions and basic measure of revenue; but sometimes that is not a feasible approach
 – Alternative – *snapshot tables*

Snapshot Tables

• Records added at the end of specific reporting time period (monthly, daily, hourly)
• Records still created by “crawling” through transactions, but at least this is done only once (for each record)
• *Current rolling snapshot* – the one being created currently
• Facts
 – Completely additive (e.g. Earned Revenue, Total Transaction Count – can add across all dimensions)
 – Semi additive (e.g. Ending Account Balance, Average Daily Balance – can add across all dimensions except time)
• Fact Structure
 – Open-ended: snapshot table can include a variety of facts, counts, and summaries
Alternative Schemas

• Accumulating Snapshots
 – Special purpose snapshots (for narrow very specialized use – lots of Type 1 overwriting in the fact table for calendar keys)

• N-way Aggregates
 – Simple snapshot schemas that keep all original dimensions from the transaction schemas and add no newly derived facts
 – Product of simple reduction of the grain level in one or more associated dimensions

Starting Schema

Calendar Dimension
 CalendarKey
 Day
 Month
 Quarter
 Year

Store Dimension
 StoreKey
 StoreName
 Territory
 Region

Product Dimension
 ProductKey
 ProductName
 Category
 Department

Sales Fact Table
 CalendarKey (FK)
 ProductKey (FK)
 StoreKey (FK)
 DollarsSold
 UnitsSold
One-way Aggregate

Calendar Dimension
- CalendarKey
 - Day
 - Month
 - Quarter
 - Year

Product Dimension
- ProductKey
 - ProductName
 - Category
 - Department

Store Dimension
- StoreKey
 - StoreName
 - Territory
 - Region

Sales Fact Table
- CalendarKey (FK)
- ProductKey (FK)
- StoreKey (FK)
- DollarsSold
- UnitsSold

Sales Fact Aggregate Table by Category
- CalendarKey (FK)
- Category (FK)
- StoreKey (FK)
- DollarsSold
- UnitsSold

Category Dimension
- CategoryKey
 - Category
 - Department

Two-way Aggregates

Calendar Dimension
- CalendarKey
 - Day
 - Month
 - Quarter
 - Year

Product Dimension
- ProductKey
 - ProductName
 - Category
 - Department

Store Dimension
- StoreKey
 - StoreName
 - Territory
 - Region

Sales Fact Table
- CalendarKey (FK)
- ProductKey (FK)
- StoreKey (FK)
- DollarsSold
- UnitsSold

Sales Fact Aggregate Table by Category and Territory
- CalendarKey (FK)
- Category (FK)
- TerritoryKey (FK)
- DollarsSold
- UnitsSold

Category Dimension
- CategoryKey
 - Category
 - Department

Territory Dimension
- TerritoryKey
 - Territory
 - Region
Retail Star Schema

Retail Snapshot Schema
Retail One-way Aggregate

Additional Concepts

• Facts of Differing Granularity
 – Two choices
 • Allocating the higher level facts to a lower granularity
 • Separate fact tables for each granularity

• Multiple Currencies and Units of Measure
 – Sometimes fact measurements need to be expressed in multiple currencies or unit so measure

• Factless Fact Tables
 – No facts in the fact table
 – Used as a method for recording events in a data warehouse when there is no natural numeric measurement associated with the event
 – 2 types of factless fact tables
 – EVENT and COVERAGE
Consolidated Fact Tables

- Measurements from multiple processes can be merged into a single-fact table (if those processes correspond to exact same combinations of dimensions)
- Usually done with aggregated data
- Result in faster query response and less complicated presentation

Consolidate Fact Table Example

- Calendar Dimension
 - CalendarKey
 - day attributes
- Store Dimension
 - StoreKey
 - store attributes
- Consolidated Actual & Forecast Sales Fact Table
 - ProductKey (FK)
 - CalendarKey (FK)
 - StoreKey (FK)
 - Actual Sales Amount
 - Forecast Sales Amount
- Product Dimension
 - ProductKey
 - product attributes
Building Dimensional Models

• Getting Started: MATRIX METHOD
 – Identifying all the possible fact tables
 – Identifying all the dimensions implied by those fact tables

• MATRIX: Identifying the Fact Tables
 – FIRST: List all single source fact tables
 • E.g. DELIVERIES FORM SUPPLIERS, CUSTOMER BILLING STATEMENTS, MARKETING PROMOTIONS TRACKING, CUSTOMER SERVICE INQUIRIES
 – SECOND: List multiple source fact tables that combine the single source designs into a broader view of business
 • E.g. CUSTOMER RELATIONSHIP MANAGEMENT (which combines CUSTOMER BILLING STATEMENTS, MARKETING PROMOTIONS TRACKING, and CUSTOMER SERVICE INQUIRIES)

• MATRIX: Identifying the Dimensions
 – Can be done after the list of fact tables was created
 – Deciding if a dimension is reasonable to consider for a fact table, regardless of whether there is a clear example of a production data source that ties the dimension into the data

The Intersection Matrix

<table>
<thead>
<tr>
<th>FACT TABLES</th>
<th>Calendar</th>
<th>Customer</th>
<th>Service</th>
<th>Rate Category</th>
<th>Local Service Provider</th>
<th>Calling Party</th>
<th>Long Distance Provider</th>
<th>Employee</th>
<th>Location</th>
<th>Equipment Type</th>
<th>Weather</th>
<th>Account Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer Billing</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Service Orders</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Trouble Reports</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Customer Inquiries</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Billing Call Detail</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Customer Relationship Management</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Customer Profit</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Building Dimensional Models

- Using the four-step method for designing the fact tables
- Managing the dimensional method project
 - Communicating the design between the people involved with the DW project
 - Graphical tools
 - Data Warehouse Bus Architecture Matrix
 - Fact Table Diagram
 - Fact Table Detail
 - Dimension Table Detail

Data Warehouse Bus Architecture Matrix

- Useful as a high-level introduction to the design
- Gives each audience a view of what the eventual scope of the data warehouse will become

Telecom. Company Data Warehouse Bus Architecture Matrix

<table>
<thead>
<tr>
<th>FACT TABLES</th>
<th>Time</th>
<th>Customer</th>
<th>Service</th>
<th>Rate Category</th>
<th>Local Service Provider</th>
<th>Called Party</th>
<th>Long Distance Provider</th>
<th>Employee</th>
<th>Location</th>
<th>Equipment Type</th>
<th>Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer Billing</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Orders</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trouble Reports</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer Inquiries</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Billing Call Detail</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Customer Relationship Management</td>
<td>X</td>
</tr>
<tr>
<td>Customer Profit</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fact Table Diagram

- Logical diagram of each completed fact table which contains:
 - Fact table name
 - Fact table grain
 - The dimensions to which the fact table is connected
 - All other dimensions proposed for the fact table
 - Other documentation (e.g. dimensions’ descriptions)

Fact Table: Customer Billing Line Item

Grain: line item on customer bill

Fact Table Detail

- Provides a complete list of all facts available through the fact table
 - Actual facts
 - Derived facts (presented through DBMS views)
 - Other documentation including fact descriptions and aggregation rules (depicting which facts are non-additive or semi-additive across which dimensions)

Fact Table: Customer Billing Line Item

<table>
<thead>
<tr>
<th>TimeKey</th>
<th>CustomerKey</th>
<th>ServiceKey</th>
<th>RateCategoryKey</th>
<th>LocalServiceProviderKey</th>
<th>LongDistanceProviderKey</th>
<th>LocationKey</th>
</tr>
</thead>
<tbody>
<tr>
<td>line_item_amount</td>
<td>line_Item_quantity</td>
<td>line_item_discount*</td>
<td>line_item_price*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* denotes derived fact

Customer Billing Line Item Fact Table Diagram
Dimension Table Detail

- Shows individual attributes (and their approximate cardinality) within a single dimension as well as other documentation (e.g. attribute description)

Customer Dimension Table Detail

- Slowly Changing Attributes

Dimension Grain

Sources for Fact and Dimension Tables

- Selecting Data Sources
 - Formal Sources – supported by IS
 - Informal Sources – importing data from PC databases, from newly designed processes, etc.

- Understanding Data Sources
 - Answering the questions
 - What are the sources?
 - What is their availability?
 - Who is responsible for them?
 - Understanding the details of the sources

- Data Source Definition
 - Source Name
 - Business Owner
 - IS Owner
 - Platform
 - Location
 - Description
Selecting Data Sources

- Issues to consider:
 - Data Accessibility
 - In case of more than one equally feasible candidate data source, choose the one with easiest access
 - Feed Longevity
 - Do not choose sources scheduled for phasing out
 - Data Accuracy
 - Project Scheduling
 - In case data sources switch to a new system while being used as DW data sources, DW must switch to receiving data from the new system
- Sources that were considered, but not selected, must be documented as well

Customer Matching

- Classical Data Warehousing Problem:
 - Combining data about customers (or some other entity for that matter) from disparate sources (A.K.A. de-duplicating, householding)
 - The problem is often not trivial
 - Sophisticated commercial software available for this special purpose
Additional Concepts

• Estimate table sizes
 – Should be done
 – Largest theoretical size: multiply number of rows for each dimension
 – For more accuracy: examine data sources
 – Must consider future as well
• Designing for aggregation
 – Aggregates stored in their own fact tables separate from the base-level data
 – Each stored aggregation level occupies its own fact table